Full Text

Turn on search term navigation

Copyright Nature Publishing Group Oct 2016

Abstract

Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (mDA) neurons for cell replacement therapy for Parkinson's disease (PD). However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. To eliminate these unwanted cells, cell sorting using antibodies for specific markers such as CORIN or ALCAM has been developed, but neither marker is specific for ventral midbrain. Here we employ a double selection strategy for cells expressing both CORIN and LMX1A::GFP, and report a cell surface marker to enrich mDA progenitors, LRTM1. When transplanted into 6-OHDA-lesioned rats, human iPSC-derived LRTM1+ cells survive and differentiate into mDA neurons in vivo, resulting in a significant improvement in motor behaviour without tumour formation. In addition, there was marked survival of mDA neurons following transplantation of LRTM1+ cells into the brain of an MPTP-treated monkey. Thus, LRTM1 may provide a tool for efficient and safe cell therapy for PD patients.

Details

Title
Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1
Author
Samata, Bumpei; Doi, Daisuke; Nishimura, Kaneyasu; Kikuchi, Tetsuhiro; Watanabe, Akira; Sakamoto, Yoshimasa; Kakuta, Jungo; Ono, Yuichi; Takahashi, Jun
Pages
13097
Publication year
2016
Publication date
Oct 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1828661712
Copyright
Copyright Nature Publishing Group Oct 2016