Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Periodic preventive maintenance of generators is required to maintain the reliable operation of a power system. However, generators under maintenance cannot supply electrical energy to the power system; therefore, it is important to determine an optimal generator maintenance schedule to facilitate efficient supply. The schedule should consider various constraints of the reliability-based demand response program, power system security, and restoration. Determining the optimal generator maintenance schedule is generally formulated as a non-linear optimization problem, which leads to difficulties in obtaining the optimal solution when the various power system constraints are considered. This study proposes a generator maintenance scheduling (GMS) method using transformation of mixed integer polynomial programming in a power system incorporating demand response. The GMS method is designed to deal with various system requirements and characteristics of demand response within a power system. A case study is conducted using data from the Korean power system to demonstrate the effectiveness of the proposed method for determining the optimal maintenance schedule. The results show that the proposed GMS method can be used to facilitate the efficient and reliable operation of a power system, by considering the applicable system constraints.

Details

Title
Generator Maintenance Scheduling Method Using Transformation of Mixed Integer Polynomial Programming in a Power System Incorporating Demand Response
Author
Hyung-Chul, Jo; Ko, Rakkyung; Sung-Kwan, Joo
First page
1646
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403216190
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.