• Full Text
    • Scholarly Journal

    Post-oxidation of all-organic electrocatalysts to promote O−O coupling in water oxidation

    ; London Vol. 16, Iss. 1,  (2025): 4389.
    DOI:10.1038/s41467-025-59771-6
    PDF CiteCite
    Copy URLPrintAll Options

    References (64)

    • 1.

      Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER

      Yang, C. H; Yang, Z. D; Dong, H; Sun, N; Lu, Y; Zhang, F. M; Zhang, G. L. ACS Energy Lett Vol. 4, .  2380-8195.
    • 2.

      Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction

      Wang, C; Zhai, P; Xia, M; Liu, W; Gao, J; Sun, L; Hou, J. Adv. Mater Vol. 35, .
    • 3.

      Oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy)hydroxide

      Wang, Y; Li, L; Shi, J; Xie, M; Nie, J; Huang, G; Li, B; Hu, W; Pan, A; Huang, W. Adv. Sci Vol. 10, Iss. 32, .
    • 4.

      Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction

      Guo, T; Li, L; Wang, Z. Adv. Energy Mater Vol. 12, .
    • 5.

      Doping of carbon materials for metal-free electrocatalysis

      Hu, C; Dai, L. Adv. Mater Vol. 31, Iss. 7, .
    • 6.

      Spectroscopic identification of active sites of oxygen-doped carbon for selective oxygen reduction to hydrogen peroxide

      Liu, L; Kang, L; Chutia, A; Feng, J; Michalska, M; Ferrer, P; Grinter, D; Held, G; Tan, Y; Zhao, F; Guo, F; Hopkinson, D; Allen, C; Hou, Y; Gu, J; Papakonstantinou, I; Shearing, P; Brett, D; Parkin, I; He, G. Angew. Chem. Int. Ed Vol. 62, Iss. 21, .
    • 7.

      Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide

      Chen, S; Luo, T; Chen, K; Lin, Y; Fu, J; Liu, K; Cai, C; Wang, Q; Li, H; Li, X; Hu, J; Li, H; Zhu, M; Liu, M. Angew. Chem. Int. Ed Vol. 60, .
    • 8.

      Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic-π interactions

      Wang, R; Zhang, Z; Suo, J; Liao, L; Li, L; Yu, Z; Zhang, H; Valtchev, V; Qiu, S; Fang, Q. Chem. Eng. J Vol. 478, .
    • 9.

      Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design

      Zhao, Y; Adiyeri Saseendran, D; Huang, C; Triana, C; Marks, W; Chen, H; Zhao, H; Patzke, G. Chem. Rev Vol. 123, Iss. 9, .
    • 10.

      1H-detected biomolecular NMR under fast magic-angle spinning

      Le Marchand, T; Schubeis, T; Bonaccorsi, M; Paluch, P; Lalli, D; Pell, A; Andreas, L; Jaudzems, K; Stanek, J; Pintacuda, G. Chem. Rev Vol. 122, Iss. 10, .
    • 11.

      Porous organic polymers for electrocatalysis

      Yang, D; Tao, Y; Ding, X; Han, B. Chem. Soc. Rev Vol. 51, Iss. 2, .
    • 12.

      Carbon-based metal-free electrocatalysts: recent progress and forward looking

      Hu, C; Gao, Y; Zhao, L; Dai, L. Chem Catal Vol. 2, .
    • 13.

      Structural transformation of heterogeneous materials for eectrocatalytic oxygen evolution reaction

      Ding, H; Liu, H; Chu, W; Wu, C; Xie, Y. Chem. Rev Vol. 121, .
    • 14.

      Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis

      Hu, C; Paul, R; Dai, Q; Dai, L. Chem. Soc. Rev Vol. 50, .
    • 15.

      Bulk COFs and COF nanosheets for electrochemical energy storage and conversion

      Li, J; Jing, X; Li, Q; Li, S; Gao, X; Feng, X; Wang, B. Chem. Soc. Rev Vol. 49, .
    • 16.

      Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis

      Cui, X; Gao, L; Ma, R; Wei, Z; Lu, C.-H; Li, Z; Yang, Y. J. Mater. Chem. A Vol. 9, Iss. 37, .
    • 17.

      Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation

      Trotochaud, L; Young, S; Ranney, J; Boettcher, S. J. Am. Chem. Soc Vol. 136, .
    • 18.

      Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media

      Liu, H; Zhang, Z; Fang, J; Li, M; Sendeku, M; Wang, X; Wu, H; Li, Y; Ge, J; Zhuang, Z; Zhou, D; Kuang, Y; Sun, X. Joule Vol. 7, .
    • 19.

      Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design

      F-Y Chen; Z-Y Wu; Z Adler; H Wang. Joule Vol. 5, (2021): 1704-1731.
    • 20.

      Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation

      Wang, Y; Yang, R; Ding, Y; Zhang, B; Li, H; Bai, B; Li, M; Cui, Y; Xiao, J; Wu, Z. Nat. Commun Vol. 14, Iss. 1, .