• Full Text
    • Scholarly Journal

    Intelligent recognition of shale fracture network images based on transfer learning

    . 
    ; Dordrecht Vol. 17, Iss. 1,  (Feb 2024): 797-812.
    DOI:10.1007/s12145-023-01202-5
    PDF CiteCite
    Copy URLPrintAll Options

    References (37)

    • 1.
      Gui R, Sun Q, Wu WQ et al (2023) Transfer learning for cross-scene 3D pavement crack detection based on enhanced deep edge features. J. Engineering Applications of Artificial Intelligence, 123(PC):106452, https://doi.org/10.1016/J.ENGAPPAI.2023.106452
    • 2.
      Jie C 2019 Research on image enhancement based on colour information. D. Nanjing University of Posts and Telecommunications. CNKI:CDMD:1.1018.891603
    • 3.
      Li YD (2021) Bridge crack morphological classification using GAN anddeep transfer-learning. D. Chang’an University. https://doi.org/10.26976/d.cnki.gchau.2020.001382
    • 4.
      Oji DN, I. SO, J. UO et al (2022) Application of buckingham theorem in the prediction of sand production rate for unconsolidated sandstone reservoirs bounded by active water aquifer. J. Advances in Petroleum Exploration and Development, 21(1). https://doi.org/10.3968/12560
    • 5.
      Prasanna P, Dana K, Gucunski N, Basily B (2012) Computer-vision based crack detection and analysis. In Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2012 (Vol. 8345, pp. 1143–1148). SPIE. https://doi.org/10.1117/12.915384
    • 6.
      Qi W, Wang YC, Jiang B et al (2023) Geomechanics model test research on large deformation control mechanism of roadway disturbed by strong dynamic pressure. J. Geohazard Mechanics, 1(2). https://doi.org/10.1016/J.GHM.2023.06.002
    • 7.
      Sun GL, Hu JC, Wang HF, Li. PF (2021) Experimental study on the deformation and failure characteristics of anchor under graded loading and corrosion. J. Advances in Materials Science and Engineering, 1–11. https://doi.org/10.1155/2021/8701180
    • 8.
      Sun GL, Hu JC, Wang HF, Li DW (2022) Electrochemical experiment to evaluate the impact of multistage load and osmotic pressure on anchor bolt. J. Geofluids, 1–13. https://doi.org/10.1155/2022/9405262
    • 9.
      Syed AQ, Jothi JAA, Anusree K (2022) Crack identification from concrete structure images using deep transfer learning C 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). IEEE, 2022: 1–7. https://doi.org/10.1109/AISP53593.2022.9760670
    • 10.
      Yazid MDM, Senin SF (2022) Automated system form concrete damage classification identification using pretrained deep learning model. C. AIP Conference Proceedings. AIP Publishing, 2532(1) https://doi.org/10.1063/5.0110080
    • 11.

      Human carcinogenic risk analysis and utilization of shale gas water-based drilling cuttings in road materials

      CQ Wang; S Chen; DM Huang. Environ Sci Pollut Res Int Vol. 30, Iss. 5, (2023): 12741-12768.
    • 12.

      Reconstruction of 3D digital rocks with controllable porosity using CVAE-GAN

      Chi, Peng; Sun, Jianmeng; Luo, Xin; Cui, Ruikang; Dong, Huaimin.  Geoenergy Science and Engineering (2023): 212264.
    • 13.

      Alexnet architecture variations with transfer learning for classification of wound images

      H Eldem; E Ülker; OY Işıklı. J. Engineering Science and Technology, an International Journal Vol. 45, (2023).
    • 14.

      RockGPT: reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning

      Q Zheng; D Zhang. Comput Geosci Vol. 26, (2022): 677-696.
    • 15.

      Deep learning and infrared thermography for asphalt pavement crack severity classification

      FY Liu; J Liu; LB Wang. J Automation in Construction Vol. 140, (2022).
    • 16.

      Super resolution reconstruction of digital core image based on transfer learning

      Y Wang; F Niu; X Zhang. J Energy Reports Vol. 8, (2022): 87-94.
    • 17.

      Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning

      H Iwata; Y Hayashi; A Hasegawa. J International Journal of Pharmaceutics: X Vol. 4, (2022).
    • 18.

      Damage prediction on bridge decks considering environmental effects with the application of deep neural networks

      S Lim; S Chi. J KSCE Journal of Civil Engineering Vol. 25, Iss. 2, (2021): 371-385.
    • 19.

      Bridge extraction algorithm based on deep learning and high-resolution satellite image

      W Yang; X Gao; C Zhang. J Scientific Programming Vol. 2021, (2021).
    • 20.

      A Review of Deep Learning on Medical Image Analysis

      J Wang; H Zhu; SH Wang; YD Zhang. Mobile Netw Appl Vol. 26, (2021): 351-380.