• Citation/Abstract
    • Scholarly Journal

    On the multi‐parameters identification of concrete dams: A novel stochastic inverse approach

    CiteCite
    Copy URLPrintAll Options

    References (52)

    • 1.

      Comprehensive investigation of leakage problems for concrete gravity dams with penetrating cracks based on detection and monitoring data: a case study

      Hu, J; Ma, F; Wu, S. Struct Control Health Monit Vol. 25, .
    • 2.

      Memory‐assisted adaptive multi‐verse optimizer and its application in structural shape and size optimization

      S Farahmand‐Tabar; M Babaei. Soft Computing Vol. 27, (2023): 11505-11527.
    • 3.

      Long‐term viscoelastic deformation monitoring of a concrete dam: a multi‐output surrogate model approach for parameter identification

      C Lin; T Li; S Chen; L Yuan; P Gelder; N Yorke‐Smith. Eng Struct Vol. 266, (2022).
    • 4.

      Multi‐parameter inverse analysis of concrete dams using kernel extreme learning machines‐based response surface model

      F Kang; X Liu; J Li; H Li. Eng Struct Vol. 256, (2022).
    • 5.

      Inverse analysis of hydraulic fracturing tests based on artificial intelligence techniques

      R Abreu; C Mejia; D Roehl. Int J Numer Anal Methods Geomech Vol. 46, (2022): 2582-2602.
    • 6.

      Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing

      L Abualigah; M Alkhrabsheh. J Supercomput Vol. 78, (2022): 740-65.
    • 7.

      Hybrid multi-verse optimizer with grey wolf optimizer for power scheduling problem in smart home using IoT

      SN Makhadmeh; AK Abasi; MA Al-Betar. J Supercomput Vol. 78, Iss. 9, (2022): 11794-11829.
    • 8.

      Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement

      SY Chen; CS Gu; CN Lin. Eng Comput-Germany Vol. 37, (2021): 1943-1959.
    • 9.

      Structural identification in long‐term deformation characteristic of dam foundation using meta‐heuristic optimization techniques

      C Lin; T Li; S Chen. Adv Eng Software Vol. 148, (2020).
    • 10.

      Nature‐Inspired Optimizers: Theories, Literature Reviews and Applications

      I Aljarah; M Mafarja; AA Heidari; H Faris; S Mirjalili: 123-141. 2020.
    • 11.

      Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications

      Abualigah, L. Neural Comput. Appl Vol. 32, (2020): 12381-12401.
    • 12.

      A new distributed time series evolution prediction model for dam deformation based on constituent elements

      MC Li; Y Shen; QB Ren; H Li. Adv Eng Inf Vol. 39, (2019): 41-52.
    • 13.

      Improved PLS and PSO methods‐based back analysis for elastic modulus of dam

      L Yang; H Su; Z Wen. Adv Eng Software Vol. 131, (2019): 205-216.
    • 14.

      Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified Constitutive Relation Error concept

      B Marchand; L Chamoin; C Rey. Comput Methods Appl Mech Eng Vol. 345, (2019): 1094-1113.
    • 15.

      A comparative analysis of long-term concrete deformation models of a buttress dam

      LS Ribeiro; VE Wilhelm; ÉF Faria. Eng Struct Vol. 193, (2019): 301-307.
    • 16.

      Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation

      F Kang; J Li; S Zhao; Y Wang. Eng Struct Vol. 180, (2019): 642-653.
    • 17.

      Risk‐based probabilistic thermal‐stress analysis of concrete arch dams

      N Soltani; M Alembagheri; MH Khaneghahi. Front Struct Civ Eng Vol. 13, (2019): 1007-1019.
    • 18.

      An empirical comparison of multiple linear regression and artificial neural network for concrete dam deformation modelling

      M Li; J Wang. Math Probl Eng(2019).
    • 19.

      Chaotic multi-verse optimizer-based feature selection

      AA Ewees; M Abd El Aziz; AE Hassanien. Neural Comput Appl Vol. 31, Iss. 4, (2019): 991-1006.
    • 20.

      Gaussian process regression-based forecasting model of dam deformation

      C Lin; T Li; S Chen. Neural Comput Appl Vol. 31, (2019): 8503-8518.