• Full Text
    • Scholarly Journal

    Large Language Model-Driven Structured Output: A Comprehensive Benchmark and Spatial Data Generation Framework

    PDF CiteCite
    Copy URLPrintAll Options

    References (53)

    • 1.

      Artificial Intelligence (AI) and Location Intelligence

    • 2.

      Paraloq Json Data Extraction

      M. Arrich. 
    • 3.

      Schema.org Vocabulary Data

    • 4.

      Supervised Fine-Tuning Trainer

    • 5.

      The R*-tree: An efficient and robust access method for points and rectangles

      Beckmann, N; Kriegel, H.-P; Schneider, R; Seeger, B. Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data; Association for Computing Machinery: New York, NY, USA.
    • 6.

      Foundations of JSON schema

      F. Pezoa; J.L. Reutter; F. Suarez; M. Ugarte; D. Vrgoč. Proceedings of the 25th International Conference on World Wide Web: 263-273.
    • 7.

      Is ChatGPT a game changer for geocoding-a benchmark for geocoding address parsing techniques

      Z. Yin; D. Li; D.W. Goldberg. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data: 1-8.
    • 8.

      MaaSDB: Spatial Databases in the Era of Large Language Models (Vision Paper)

      J. Qi; Z. Li; E. Tanin. Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems: 1-4.
    • 9.

      BLEU: A Method for Automatic Evaluation of Machine Translation

      K. Papineni; S. Roukos; T. Ward; W.J. Zhu. Proceedings of the 40th annual meeting of the Association for Computational Linguistics: 311-318.
    • 10.

      Benchmarking large language models in retrieval-augmented generation

      J. Chen; H. Lin; X. Han; L. Sun. Proceedings of the AAAI Conference on Artificial Intelligence Vol. Volume 38, : 17754-17762.
    • 11.

      Zhongjing: Enhancing the chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue

      S. Yang; H. Zhao; S. Zhu; G. Zhou; H. Xu; Y. Jia; H. Zan. Proceedings of the AAAI Conference on Artificial Intelligence Vol. Volume 38, : 19368-19376.
    • 12.

      Filling in the Gaps: LLM-Based Structured Data Generation from Semi-Structured Scientific Data

      H. Ko; H. Yang; S. Han; S. Kim; S. Lim; R. Hormazabal. Proceedings of the ICML 2024 AI for Science Workshop.
    • 13.

      LLMs on the Fly: Text-to-JSON for Custom API Calling

      M. Escarda-Fernández; I. López-Riobóo-Botana; S. Barro-Tojeiro; L. Padrón-Cousillas; S. Gonzalez-Vázquez; A. Carreiro-Alonso; P. Gómez-Area. Proceedings of the SEPLN-CEDI 2024: VII Congreso Español de Informática.
    • 14.
      M. Zhang; N. Zhi; J. Feng; Y. Liu; M. Zhang; D. Liu; J. Yuan; Y. Dong; S. Jiang; J. Ge.  Vol. 13, (2024): e2306498-.
    • 15.
      C. Ning; D. Wang; G. Yuan; L. Wang; F. Liu; H. Sun; Y. Lu; J. He; Y. Ma; Y. Lin. (2024): 1448-1451.
    • 16.
      S.R. Dubey; S.K. Singh. (2024): 1-16.
    • 17.
      M. Douze; A. Guzhva; C. Deng; J. Johnson; G. Szilvasy; P.E. Mazaré; M. Lomeli; L. Hosseini; H. Jégou. (2024).
    • 18.
      L. Beurer-Kellner; M. Fischer; M. Vechev. (2024).
    • 19.
      M.J. Mior. (2024).
    • 20.
      K. Jordahl. 2024.