SDR: stepwise deep rectangling model for stitched images
The Visual Computer
; Heidelberg Vol. 41, Iss. 2, (Jan 2025): 1197-1211.
DOI:10.1007/s00371-024-03407-1
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/sdr-stepwise-deep-rectangling-model-stitched/docview/3163041678/se-2?accountid=208611
PrintAll OptionsReferences (64)
- 3.Chang, C.H., Sato, Y., Chuang, Y.Y.: Shape-preserving half-projective warps for image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3254–3261 (2014)
- Times cited 2 on ProQuest
- 5.DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)
- Times cited 5 on ProQuest
- 6.He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
- Times cited 433 on ProQuest
- 7.Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)
- Times cited 20 on ProQuest
- 8.Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14, pp. 694–711. Springer (2016)
- Times cited 6 on ProQuest
- 12.Liao, T., Li, N.: Natural image stitching using depth maps. arXiv preprint arXiv:2202.06276 (2022)
- Times cited 2 on ProQuest