• Full Text
    • Scholarly Journal

    SDR: stepwise deep rectangling model for stitched images

    ; Heidelberg Vol. 41, Iss. 2,  (Jan 2025): 1197-1211.
    DOI:10.1007/s00371-024-03407-1
    PDF CiteCite
    Copy URLPrintAll Options

    References (64)

    • 1.
      Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: ACM SIGGRAPH 2007 Papers. 10–es (2007)
    • 2.
      Chang, C.-H., Chuang, Y.-Y.: A line-structure-preserving approach to image resizing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1075–1082. IEEE (2012)
    • 3.
      Chang, C.H., Sato, Y., Chuang, Y.Y.: Shape-preserving half-projective warps for image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3254–3261 (2014)
    • 4.
      Chen, Y.-S., Chuang, Y.-Y.: Natural image stitching with the global similarity prior. In: Part, V. (ed.) Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, pp. 186–201. Springer (2016)
    • 5.
      DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)
    • 6.
      He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
    • 7.
      Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)
    • 8.
      Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14, pp. 694–711. Springer (2016)
    • 9.
      Kajiura, N., Kosugi, S., Wang, X., Yamasaki, T.: Self-play reinforcement learning for fast image retargeting. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1755–1763 (2020)
    • 10.
      Karni, Z., Freedman, D., Gotsman, C.: Energy-based image deformation. In: Computer Graphics Forum, vol. 28, pp. 1257–1268. Wiley Online Library (2009)
    • 11.
      Li, D., He, K., Sun, J., Zhou, K.: A geodesic-preserving method for image warping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 213–221 (2015)
    • 12.
      Liao, T., Li, N.: Natural image stitching using depth maps. arXiv preprint arXiv:2202.06276 (2022)
    • 13.
      Lin, K., Jiang, N., Cheong, L.F., Do, M., Lu, J.: Seagull: Seam-guided local alignment for parallax-tolerant image stitching. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part III 14, pp. 370–385. Springer (2016)
    • 14.
      Lu, P., Liu, J., Peng, X. and Wang, X.: Weakly supervised real-time image cropping based on aesthetic distributions. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 120–128 (2020)
    • 15.
      Mastan, I.D., Raman, S.: Dcil: Deep contextual internal learning for image restoration and image retargeting. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2366–2375 (2020)
    • 16.
      Nie, L., Lin, C., Liao, K., Liu, S., Zhao, Y.: Deep rectangling for image stitching: a learning baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5740–5748(2022)
    • 17.
      Nie, L., Lin, C., Liao, K., Liu, S., Zhao, Y.: Depth-aware multi-grid deep homography estimation with contextual correlation. arXiv preprint arXiv:2107.02524 (2021)
    • 18.
      Noh, H., Han, B.: Seam carving with forward gradient difference maps. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 709–712 (2012)
    • 19.
      Shi, M., Yang, L., Peng, G., Xu, D.: A content-aware image resizing method with prominent object size adjusted. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 175–176 (2010)
    • 20.
      Shocher, A., Bagon, S., Isola, P., Irani, M.: Ingan: capturing and retargeting the “DNA” of a natural image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4492–4501(2019)