• Full Text
    • Scholarly Journal

    Optimizing casting process using a combination of small data machine learning and phase-field simulations

    ; London Vol. 11, Iss. 1,  (2025): 27.
    DOI:10.1038/s41524-025-01524-6
    PDF CiteCite
    Copy URLPrintAll Options

    References (75)

    • 1.
      Jolly, M., Katgerman, L. Modelling of defects in aluminium cast products. Prog. Mater. Sci . 123 (2022).
    • 2.
      Luo, J., Zhao, W., Peng, J. Causal softmax for out-of-distribution generalization. Digit. Signal. Process . 104861 (2024).
    • 3.
      Narasimhulu, Y., Suthar, A., Pasunuri, R., Venkaiah, C. V. CKD-Tree: an improved KD-Tree construction algorithm. Proc. Int. Semantic Intell. Conf. 211–218 (2021).
    • 4.
      Zhao, Y. Editorial: Phase field method and integrated computing materials engineering. Front. Mater . 10 (2023).
    • 5.
      Zhou, D., Kang, Z., Su, X. Study on squeeze casting process of the integrated aluminum alloy subframe. Int. J. Metalcast . (2023).
    • 6.

      Synchronously enhancing the strength, toughness, and stress corrosion resistance of high-end aluminum alloys via interpretable machine learning

      Jiang, L; Fu, H; Zhang, Z; Zhang, H; Zhang, X; Feng, X; Xu, X; Mao, M; Xie, J. Acta Mater Vol. 270, .
    • 7.

      Interpretable predicting creep rupture life of superalloys: enhanced by domain-specific knowledge

      Yin, J; Rao, Z; Wu, D. Adv. Sci Vol. 11, Iss. 11, .
    • 8.

      Development of phase-field modeling in materials science in China: A review

      Zhao, Y; Xing, H; Zhang, L; Huang, H; Sun, D; Dong, X. Acta Metall Sin-Engl Vol. 36, .
    • 9.

      Machine learning assisted composition effective design for precipitation strengthened copper alloys

      Zhang, Hongtao; Fu, Huadong; Zhu, Shuaicheng; Yong, Wei; Xie, Jianxin.  ACTA MATERIALIA Vol. 215,  (Aug 2021).
    • 10.

      Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-CX alloys: modeling and applications

      Kuang, W; Wang, H; Li, X; Zhang, J; Zhou, Q; Zhao, Y. Acta Mater Vol. 159, .
    • 11.

      Machine-learning microstructure for inverse material design

      Pei, Z; Rozman, K; Doğan, Ö.N; Wen, Y; Gao, N; Holm, E. Adv Sci Vol. 8, .
    • 12.

      A conditioned Latin hypercube method for sampling in the presence of ancillary information

      B Minasny; AB McBratney. Comput Geosci Vol. 32, Iss. 9, (2006): 1378-1388.
    • 13.

      Application of machine learning for the classification of corrosion behavior in different environments for material selection of stainless steels

      Hakimian, S; Pourrahimi, S; Bouzid, A.-H; Hof, L. Comput Mater Sci Vol. 228, .
    • 14.

      Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs

      Malkov, Y; Yashunin, D. IEEE Trans. Pattern Anal. Mach. Intell Vol. 42, Iss. 4, .
    • 15.

      Predicting the hardness of high-entropy alloys based on compositions

      Guo, Q; Pan, Y; Hou, H; Zhao, Y. Int. J. Refract. Met. H Vol. 112, .
    • 16.

      A systematic approach to model and optimize qualities of castings produced by squeeze casting process

      Zhou, D; Su, X; Yang, C. Int. J. Met Vol. 17, Iss. 3, .
    • 17.

      Model selection and evaluation for machine learning: deep learning in materials processing

      Kopper, A; Karkare, R; Paffenroth, R; Apelian, D. Integr. Mater. Manuf. Innov Vol. 9, .
    • 18.

      Predict the phase formation of high-entropy alloys by compositions

      Guo, Q; Xu, X; Pei, X; Duan, Z; Liaw, P; Hou, H; Zhao, Y. J. Mater. Res. Technol Vol. 22, .
    • 19.

      Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study

      Zhao, Y; Liu, K; Hou, H; Chen, L.-Q. Mater. Des Vol. 216, .
    • 20.

      Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu-Al-Ni alloy

      Tian, X; Zhao, Y; Gu, T. Mater Sci Eng A Vol. 849, .