• Full Text
    • Scholarly Journal

    Statistical batch-based bearing fault detection

    ; Heidelberg Vol. 15, Iss. 1,  (Dec 2025): 4.
    DOI:10.1186/s13362-025-00169-w
    PDF CiteCite
    Copy URLPrintAll Options

    References (26)

    • 1.
      Case Western Reserve University (CWRU) bearing data center. Accessed: May. 2023. https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website .
    • 2.
      Lei Y. Intelligent fault diagnosis and remaining useful life prediction of rotating machinery. Butterworth-Heinemann. 2016.
    • 3.

      Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review

      Neupane, D; Seok, J. IEEE Access Vol. 8, .
    • 4.

      An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network

      Q Zhang; L Deng. J Fail Anal Prev Vol. 23, Iss. 2, (2023): 795-811.
    • 5.

      Control charts and machine learning for anomaly detection in manufacturing

      KP Tran: 2022.
    • 6.

      The bearing faults detection methods for electrical machines–the state of the art

      MA Khan; B Asad; K Kudelina; T Vaimann; A Kallaste. Energies Vol. 16, Iss. 1, (2022).
    • 7.

      Self-supervised signal representation learning for machinery fault diagnosis under limited annotation data

      H Wang; Z Liu; Y Ge; D Peng. Knowl-Based Syst Vol. 239, (2022).
    • 8.

      A literature review on one-class classification and its potential applications in big data

      N Seliya; A Abdollah Zadeh; TM Khoshgoftaar. J Big Data Vol. 8, (2021): 1-31.
    • 9.

      Deep learning algorithms for bearing fault diagnostics-a comprehensive review

      Zhang, S; Zhang, S; Wang, B; Habetler, T G. IEEE Access Vol. 8, (2020): 29857-29881.  2169-3536.
    • 10.

      Rolling bearing fault diagnosis based on convolutional neural network and support vector machine

      L Yuan; D Lian; X Kang; Y Chen; K Zhai. IEEE Access Vol. 8, (2020): 137395-137406.
    • 11.

      Remaining useful life prediction and fault diagnosis of rolling bearings based on short-time Fourier transform and convolutional neural network

      S Zhou; M Xiao; P Bartos. Shock Vib Vol. 2020, (2020): 1-14.
    • 12.

      Fault detection for rolling-element bearings using multivariate statistical process control methods

      X Jin; J Fan; TW Chow. IEEE Trans Instrum Meas Vol. 68, Iss. 9, (2018): 3128-3136.
    • 13.

      A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load

      Zhang, W; Li, C; Peng, G; Chen, Y; Zhang, Z. Mech Syst Signal Process Vol. 100, (2018): 439-453.
    • 14.

      Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation

      D Cabrera; F Sancho; C Li. Appl Soft Comput J Vol. 58, (2017): 53-64.
    • 15.

      Bearing vibration detection and analysis using enhanced fast fourier transform algorithm

      H-C Lin; Y-C Ye; B-J Huang; J-L Su. Adv Mech Eng Vol. 8, Iss. 10, (2016).
    • 16.

      Fault detection in rotor bearing systems using time frequency techniques

      NH Chandra; AS Sekhar. Mech Syst Signal Process Vol. 72, (2016): 105-133.
    • 17.

      Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference

      WA Smith; Z Fan; Z Peng; H Li; RB Randall. Mech Syst Signal Process Vol. 75, (2016): 371-394.
    • 18.

      Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference

      J Huang; X Yan. Chemom Intell Lab Syst Vol. 148, (2015): 115-127.
    • 19.

      Rolling element bearing diagnostics using the case western reserve university data: a benchmark study

      WA Smith; RB Randall. Mech Syst Signal Process Vol. 64, Iss. 65, (2015): 100-131.
    • 20.

      Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures

      SJ Qin; Y Zheng. AICHE J Vol. 59, Iss. 2, (2013): 496-504.