DeepAF: Transformer-Based Deep Data Association and Track Filtering Network for Multi-Target Tracking in Clutter
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/deepaf-transformer-based-deep-data-association/docview/3181339758/se-2?accountid=208611
PrintAll OptionsReferences (67)
- 1.
High-speed tracking-by-detection without using image information
E. Bochinski; V. Eiselein; T. Sikora. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS): 1-6.- Times cited 19 on ProQuest
- 2.
Simple online and realtime tracking with a deep association metric
Wojke, N; Bewley, A; Paulus, D. Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP).- Times cited 73 on ProQuest
- 6.
How to train your deep multi-object tracker
Y. Xu; A. Osep; Y. Ban; R. Horaud; L. Leal-Taixé; X. Alameda-Pineda. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition: 6787-6796.- Times cited 2 on ProQuest
- 7.
Retinatrack: Online single stage joint detection and tracking
Z. Lu; V. Rathod; R. Votel; J. Huang. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 14668-14678.- Times cited 4 on ProQuest
- 10.
Track to detect and segment: An online multi-object tracker
J. Wu; J. Cao; L. Song; Y. Wang; M. Yang; J. Yuan. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).- Times cited 3 on ProQuest
- 14.
Towards real-time multi-object tracking
Z. Wang; L. Zheng; Y. Liu; Y. Li; S. Wang. Proceedings of the European Conference on Computer Vision: 107-122.- Times cited 18 on ProQuest
- 15.
Learning of Global Objective for Network Flow in Multi-Object Tracking
S. Li; Y. Kong; H. Rezatofighi. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.- Times cited 2 on ProQuest
- 16.
Memot: Multi-object tracking with memory
J. Cai; M. Xu; W. Li; Z. Xiong; W. Xia; Z. Tu; S. Soatto. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).- Times cited 8 on ProQuest
- 17.
Bridging the gap between detection and tracking: A unified approach
L. Huang; X. Zhao; K. Huang. Proceedings of the IEEE/CVF International Conference on Computer Vision: 3999-4009.- Times cited 4 on ProQuest
- 18.
Joint monocular 3D vehicle detection and tracking
H.N. Hu; Q.Z. Cai; D. Wang; J. Lin; M. Sun; P. Krahenbuhl; T. Darrell; F. Yu. Proceedings of the IEEE/CVF International Conference on Computer Vision: 5390-5399.- Times cited 9 on ProQuest
- 19.
Pyramid vision transformer: A versatile backbone for dense prediction without convolutions
W. Wang; E. Xie; X. Li; D.-P. Fan; K. Song; D. Liang; T. Lu; P. Luo; L. Shao. Proceedings of the IEEE/CVF International Conference on Computer Vision: 568-578.- Times cited 58 on ProQuest
- 20.
Spatial-temporal relation networks for multi-object tracking
Xu, J; Cao, Y; Zhang, Z; Hu, H. Proceedings of the IEEE/CVF International Conference on Computer Vision.- Times cited 2 on ProQuest