• Full Text
    • Scholarly Journal

    Quantum global minimum finder based on variational quantum search

    ; London Vol. 15, Iss. 1,  (2025): 13880.
    DOI:10.1038/s41598-025-91407-z
    PDF CiteCite
    Copy URLPrintAll Options

    References (33)

    • 1.
      Bergholm, V. et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 (2022).
    • 2.
      Bravo-Prieto, C. et al. Variational quantum linear solver. Quantum 7 , 1188. https://doi.org/10.22331/q-2023-11-22-1188 (2023).
    • 3.
      Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B. & LeCun, Y. The loss surfaces of multilayer networks. in Artificial Intelligence and Statistics , 192–204 (PMLR, 2015).
    • 4.
      Dixit, A. K. Optimization in Economic Theory [SPACE] https://academic.oup.com/book/0/chapter/420796084/chapter-pdf/52079915/isbn-9780198772101-book-part-1.pdf (Oxford University Press, 1990).
    • 5.
      Ge, R., Huang, F., Jin, C. & Yuan, Y. Escaping from saddle points-online stochastic gradient for tensor decomposition. In Conference on Learning Theory , 797–842 (PMLR, 2015).
    • 6.
      Gilliam, A., Woerner, S. & Gonciulea, C. Grover adaptive search for constrained polynomial binary optimization. Quantum 5 , 428 https://doi.org/10.22331/q-2021-04-08-428 (2021).
    • 7.
      Grover, L. K. A fast quantum mechanical algorithm for database search. In Symposium on the Theory of Computing (1996).
    • 8.
      Häner, T., Roetteler, M. & Svore, K. M. Optimizing quantum circuits for arithmetic. arXiv:1805.12445 [quant-ph] (2018).
    • 9.
      Ploskas, N. & Sahinidis, N. V. Review and comparison of algorithms and software for mixed-integer derivative-free optimization. J. Glob. Optim. 1–30 (2022).
    • 10.
      Rajak, A., Suzuki, S., Dutta, A. & Chakrabarti, B. K. Quantum annealing: an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 381 , https://doi.org/10.1098/rsta.2021.0417 (2022).
    • 11.
      Ruder, S. An overview of gradient descent optimization algorithms. arXiv:1609.04747 [cs.LG] (2017).
    • 12.
      Soltaninia, M. & Zhan, J. Comparison of quantum simulators for variational quantum search: A benchmark study. arXiv:2309.05924 [quant-ph] (2023).
    • 13.
      Zhan, J. Near-perfect reachability of variational quantum search with depth-1 ansatz. arXiv:2301.13224 [quant-ph] (2023).
    • 14.
      Zhan, J. Quantum multiplier based on exponent adder. arXiv:2309.10204 [quant-ph] (2023).
    • 15.
      Zhan, J. Variational quantum search with shallow depth for unstructured database search. arXiv:2212.09505 [quant-ph] (2023).
    • 16.

      Derivative-free optimization methods

      Larson, J; Menickelly, M; Wild, S. Acta Numer Vol. 28, .
    • 17.

      An improved qft-based quantum comparator and extended modular arithmetic using one ancilla qubit

      Y Yuan. New J. Phys Vol. 25, (2023).
    • 18.

      Efficient floating point arithmetic for quantum computers

      R Seidel; N Tcholtchev; S Bock; CK Becker; M Hauswirth. IEEE Access Vol. 10, (2022): 72400-72415.
    • 19.

      Quantum state preparation with optimal circuit depth: Implementations and applications

      Zhang X-M; Li T; Yuan X. Phys. Rev. Lett Vol. 129, (2022).
    • 20.

      A review on genetic algorithm: past, present, and future

      S. Katoch; S.S. Chauhan; V. Kumar. Multimed. Tools Appl Vol. 80, Iss. 5, (2021): 8091-8126.