Optimizing the Long-Term Efficiency of Users and Operators in Mobile Edge Computing Using Reinforcement Learning
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/optimizing-long-term-efficiency-users-operators/docview/3194581963/se-2?accountid=208611
PrintAll OptionsReferences (38)
- 3.
Multi-Agent Deep Reinforcement Learning-Based Partial Offloading and Resource Allocation in Vehicular Edge Computing Networks
J. Xue; L. Wang; Q. Yu; P. Mao. Comput. Commun Vol. 234, (2025).- Times cited 3 on ProQuest
- 14.
Air-Ground Coordinated MEC: Joint Task, Time Allocation and Trajectory Design
L. Wang; Y. Li; Y. Chen; T. Li; Z. Yin. IEEE Trans. Veh. Technol Vol. 74, (2024).- Times cited 2 on ProQuest
- 18.
Wireless Powered Mobile Edge Computing Networks: A Survey
X. Wang; J. Li; Z. Ning; Q. Song; L. Guo; S. Guo; M.S. Obaidat. ACM Comput. Surv Vol. 55, (2023).- Times cited 2 on ProQuest