Post-oxidation of all-organic electrocatalysts to promote O−O coupling in water oxidation
Nature Communications
; London Vol. 16, Iss. 1, (2025): 4389.
DOI:10.1038/s41467-025-59771-6
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/post-oxidation-all-organic-electrocatalysts/docview/3204003528/se-2?accountid=208611
PrintAll OptionsReferences (64)
- 1.
Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER
Yang, C. H; Yang, Z. D; Dong, H; Sun, N; Lu, Y; Zhang, F. M; Zhang, G. L. ACS Energy Lett Vol. 4, . 2380-8195.- Times cited 6 on ProQuest
- 2.
Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction
Wang, C; Zhai, P; Xia, M; Liu, W; Gao, J; Sun, L; Hou, J. Adv. Mater Vol. 35, .- Times cited 26 on ProQuest
- 3.
Oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy)hydroxide
Wang, Y; Li, L; Shi, J; Xie, M; Nie, J; Huang, G; Li, B; Hu, W; Pan, A; Huang, W. Adv. Sci Vol. 10, Iss. 32, .- Times cited 20 on ProQuest
- 4.
Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction
Guo, T; Li, L; Wang, Z. Adv. Energy Mater Vol. 12, .- Times cited 24 on ProQuest
- 5.
Doping of carbon materials for metal-free electrocatalysis
Hu, C; Dai, L. Adv. Mater Vol. 31, Iss. 7, .- Times cited 19 on ProQuest
- 6.
Spectroscopic identification of active sites of oxygen-doped carbon for selective oxygen reduction to hydrogen peroxide
Liu, L; Kang, L; Chutia, A; Feng, J; Michalska, M; Ferrer, P; Grinter, D; Held, G; Tan, Y; Zhao, F; Guo, F; Hopkinson, D; Allen, C; Hou, Y; Gu, J; Papakonstantinou, I; Shearing, P; Brett, D; Parkin, I; He, G. Angew. Chem. Int. Ed Vol. 62, Iss. 21, .- Times cited 4 on ProQuest
- 7.
Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide
Chen, S; Luo, T; Chen, K; Lin, Y; Fu, J; Liu, K; Cai, C; Wang, Q; Li, H; Li, X; Hu, J; Li, H; Zhu, M; Liu, M. Angew. Chem. Int. Ed Vol. 60, .- Times cited 18 on ProQuest
- 8.
Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic-π interactions
Wang, R; Zhang, Z; Suo, J; Liao, L; Li, L; Yu, Z; Zhang, H; Valtchev, V; Qiu, S; Fang, Q. Chem. Eng. J Vol. 478, .- Times cited 9 on ProQuest
- 9.
Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design
Zhao, Y; Adiyeri Saseendran, D; Huang, C; Triana, C; Marks, W; Chen, H; Zhao, H; Patzke, G. Chem. Rev Vol. 123, Iss. 9, .- Times cited 48 on ProQuest
- 10.
1H-detected biomolecular NMR under fast magic-angle spinning
Le Marchand, T; Schubeis, T; Bonaccorsi, M; Paluch, P; Lalli, D; Pell, A; Andreas, L; Jaudzems, K; Stanek, J; Pintacuda, G. Chem. Rev Vol. 122, Iss. 10, .- Times cited 5 on ProQuest
- 11.
Porous organic polymers for electrocatalysis
Yang, D; Tao, Y; Ding, X; Han, B. Chem. Soc. Rev Vol. 51, Iss. 2, .- Times cited 5 on ProQuest
- 12.
Carbon-based metal-free electrocatalysts: recent progress and forward looking
Hu, C; Gao, Y; Zhao, L; Dai, L. Chem Catal Vol. 2, .- Times cited 2 on ProQuest
- 13.
Structural transformation of heterogeneous materials for eectrocatalytic oxygen evolution reaction
Ding, H; Liu, H; Chu, W; Wu, C; Xie, Y. Chem. Rev Vol. 121, .- Times cited 15 on ProQuest
- 14.
Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis
Hu, C; Paul, R; Dai, Q; Dai, L. Chem. Soc. Rev Vol. 50, .- Times cited 12 on ProQuest
- 15.
Bulk COFs and COF nanosheets for electrochemical energy storage and conversion
Li, J; Jing, X; Li, Q; Li, S; Gao, X; Feng, X; Wang, B. Chem. Soc. Rev Vol. 49, .- Times cited 3 on ProQuest
- 16.
Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis
Cui, X; Gao, L; Ma, R; Wei, Z; Lu, C.-H; Li, Z; Yang, Y. J. Mater. Chem. A Vol. 9, Iss. 37, .- Times cited 7 on ProQuest
- 17.
Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
Trotochaud, L; Young, S; Ranney, J; Boettcher, S. J. Am. Chem. Soc Vol. 136, .- Times cited 29 on ProQuest
- 18.
Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media
Liu, H; Zhang, Z; Fang, J; Li, M; Sendeku, M; Wang, X; Wu, H; Li, Y; Ge, J; Zhuang, Z; Zhou, D; Kuang, Y; Sun, X. Joule Vol. 7, .- Times cited 61 on ProQuest
- 19.
Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design
F-Y Chen; Z-Y Wu; Z Adler; H Wang. Joule Vol. 5, (2021): 1704-1731.- Times cited 50 on ProQuest
- 20.
Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation
Wang, Y; Yang, R; Ding, Y; Zhang, B; Li, H; Bai, B; Li, M; Cui, Y; Xiao, J; Wu, Z. Nat. Commun Vol. 14, Iss. 1, .- Times cited 33 on ProQuest