• Full Text
    • Scholarly Journal

    Exploring sentence-level revision capabilities of large language models in English for academic purposes writing assistance

    ; Heidelberg Vol. 10, Iss. 1,  (Dec 2025): 27.
    DOI:10.1186/s40862-025-00334-z
    PDF CiteCite
    Copy URLPrintAll Options

    References (48)

    • 1.
      Amatriain, X. (2024). Prompt design and engineering: Introduction and advanced methods.
    • 2.
      Dash, N. S. (2024). Corpus linguistics and language technology. In Routledge encyclopedia of technology and the humanities (pp. 219–246).
    • 3.
      Davis, M., & Morley, J. (2018). Facilitating learning about academic phraseology: Teaching activities for student writers. Journal of Learning Development in Higher Education , https://doi.org/10.47408/jldhe.v0i0.468 .
    • 4.
      Du, W., Kim, Z.M., Raheja, V., Kumar, D., & Kang, D. (2022). Read, revise, repeat: A system demonstration for human-in-the-loop iterative text revision. In T.-H. K. Huang et al. (Eds.), Proceedings of the first workshop on intelligent and interactive writing assistants (in2writing 2022) (pp. 96–108). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.in2writing-1.14 .
    • 5.
      Du, Z., & Hashimoto, K. (2023a). Data augmentation for sentrev using back-translation of lexical bundles. In Proceedings of the 37th pacific Asia conference on language, information and computation (pp. 70–79).
    • 6.
      Du, Z., & Hashimoto, K. (2023b) . Exploiting paraphrasers and inverse paraphrasers: A novel approach to enhance English writing fluency through improved style transfer training data. In Proceedings of the 2023 7th international conference on computer science and artificial intelligence (pp. 346–352).
    • 7.
      Du, Z., & Hashimoto, K. (2023c). Sentence-level revision with neural reinforcement learning. In Proceedings of the 35th conference on computational linguistics and speech processing (rocling 2023) (pp. 202–209).
    • 8.
      Fang, T., Yang, S., Lan, K., Wong, D. F., Hu, J., Chao, L. S., & Zhang, Y. (2023). Is chatgpt a highly fluent grammatical error correction system? A comprehensive evaluation. ArXiv , arXiv:abs/2304.01746 , , Retrieved from https://api.semanticscholar.org/CorpusID:257921532 .
    • 9.
      Ito, T., Kuribayashi, T., Hidaka, M., Suzuki, J., & Inui, K. (2020). Langsmith: An interactive academic text revision system. In Q. Liu and D. Schlangen (Eds.), Proceedings of the 2020 conference on empirical methods in natural language processing: System demonstrations (pp. 216–226). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.emnlp-demos.28 .
    • 10.
      Lavie, A., & Agarwal, A. (2007). METEOR: An automatic metric for MT evaluation with high levels of correlation with human judgments. In C. Callison-Burch, P. Koehn, C.S. Fordyce, and C. Monz (Eds.), Proceedings of the second workshop on statistical machine translation (pp. 228–231). Prague, Czech Republic: Association for Computational Linguistics. Retrieved from https://aclanthology.org/W07-0734 .
    • 11.
      Li, R., Jiao, Q., Cao, W., Wong, H. -S., & Wu, S. (2020). Model adaptation: Unsupervised domain adaptation without source data. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 9641–9650).
    • 12.
      Lin, C. -Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74–81). Association for Computational Linguistics. Retrieved from https://aclanthology.org/W04-1013 .
    • 13.
      Naghshnejad, M., Joshi, T., & Nair, V. N. (2020). Recent trends in the use of deep learning models for grammar error handling.
    • 14.
      Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., & Mian, A. S. (2023). A comprehensive overview of large language models. ArXiv , arXiv:2307.06435 , Retrieved from https://api.semanticscholar.org/CorpusID:259847443 .
    • 15.
      Papineni, K., Roukos, S., Ward, T., & Zhu, W. -J. (2002). Bleu: A method for automatic evaluation of machine translation. In P. Isabelle, E. Charniak, and D. Lin (Eds.), Proceedings of the 40th annual meeting of the association for computational linguistics (pp. 311–318). Association for Computational Linguistics. Retrieved from https://aclanthology.org/P02-1040 .
    • 16.
      Puspaningrum, E.Y., Nugroho, B., Setiawan, A., & Hariyanti, N. (2020). Detection of text similarity for indication plagiarism using winnowing algorithm based k-gram and jaccard coefficient. In Journal of physics: Conference series (Vol. 1569, p.022044).
    • 17.
      Ribeiro, M.T., Wu, T., Guestrin, C., & Singh, S. (2020). Beyond accuracy: Behavioral testing of nlp models with checklist. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 4902–4912). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.acl-main.442 .
    • 18.
      Sorensen, T., Robinson, J., Rytting, C., Shaw, A., Rogers, K., Delorey, A., & Wingate, D. (2022). An information-theoretic approach to prompt engineering without ground truth labels. In S. Muresan, P. Nakov, and A. Villavicencio (Eds.), Proceedings of the 60th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 819–862). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.acl-long.60 .
    • 19.
      Street, W., Siy, J. O., Keeling, G., Baranes, A., Barnett, B., McKibben, M. et al. (2024). Llms achieve adult human performance on higher-order theory of mind tasks. arXiv preprint arXiv:2405.18870
    • 20.
      Sun, X., Li, X., Li, J., Wu, F., Guo, S., Zhang, T., & Wang, G. (2023). Text classification via large language models. In H. Bouamor, J. Pino, and K. Bali (Eds.), Findings of the association for computational linguistics: Emnlp 2023 (pp. 8990–9005). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2023.findings-emnlp.603 .