Exploring sentence-level revision capabilities of large language models in English for academic purposes writing assistance
Asian-Pacific Journal of Second and Foreign Language Education
; Heidelberg Vol. 10, Iss. 1, (Dec 2025): 27.
DOI:10.1186/s40862-025-00334-z
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/exploring-sentence-level-revision-capabilities/docview/3212989461/se-2?accountid=208611
PrintAll OptionsReferences (48)
- 4.Du, W., Kim, Z.M., Raheja, V., Kumar, D., & Kang, D. (2022). Read, revise, repeat: A system demonstration for human-in-the-loop iterative text revision. In T.-H. K. Huang et al. (Eds.), Proceedings of the first workshop on intelligent and interactive writing assistants (in2writing 2022) (pp. 96–108). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.in2writing-1.14 .
- 6.Du, Z., & Hashimoto, K. (2023b) . Exploiting paraphrasers and inverse paraphrasers: A novel approach to enhance English writing fluency through improved style transfer training data. In Proceedings of the 2023 7th international conference on computer science and artificial intelligence (pp. 346–352).
- 9.Ito, T., Kuribayashi, T., Hidaka, M., Suzuki, J., & Inui, K. (2020). Langsmith: An interactive academic text revision system. In Q. Liu and D. Schlangen (Eds.), Proceedings of the 2020 conference on empirical methods in natural language processing: System demonstrations (pp. 216–226). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.emnlp-demos.28 .
- 10.Lavie, A., & Agarwal, A. (2007). METEOR: An automatic metric for MT evaluation with high levels of correlation with human judgments. In C. Callison-Burch, P. Koehn, C.S. Fordyce, and C. Monz (Eds.), Proceedings of the second workshop on statistical machine translation (pp. 228–231). Prague, Czech Republic: Association for Computational Linguistics. Retrieved from https://aclanthology.org/W07-0734 .
- 15.Papineni, K., Roukos, S., Ward, T., & Zhu, W. -J. (2002). Bleu: A method for automatic evaluation of machine translation. In P. Isabelle, E. Charniak, and D. Lin (Eds.), Proceedings of the 40th annual meeting of the association for computational linguistics (pp. 311–318). Association for Computational Linguistics. Retrieved from https://aclanthology.org/P02-1040 .
- 17.Ribeiro, M.T., Wu, T., Guestrin, C., & Singh, S. (2020). Beyond accuracy: Behavioral testing of nlp models with checklist. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 4902–4912). Online: Association for Computational Linguistics. Retrieved from https://aclanthology.org/2020.acl-main.442 .
- 18.Sorensen, T., Robinson, J., Rytting, C., Shaw, A., Rogers, K., Delorey, A., & Wingate, D. (2022). An information-theoretic approach to prompt engineering without ground truth labels. In S. Muresan, P. Nakov, and A. Villavicencio (Eds.), Proceedings of the 60th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 819–862). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2022.acl-long.60 .
- 20.Sun, X., Li, X., Li, J., Wu, F., Guo, S., Zhang, T., & Wang, G. (2023). Text classification via large language models. In H. Bouamor, J. Pino, and K. Bali (Eds.), Findings of the association for computational linguistics: Emnlp 2023 (pp. 8990–9005). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2023.findings-emnlp.603 .