• Full Text
    • Scholarly Journal

    PWFS: Probability-Weighted Feature Selection

    . 
    ; Basel Vol. 14, Iss. 11,  (2025): 2264.
    DOI:10.3390/electronics14112264
    PDF CiteCite
    Copy URLPrintAll Options

    References (22)

    • 1.

      QSAR Biodegradation. UCI Machine Learning Repository, 2013

      K. Mansouri; T. Ringsted; D. Ballabio; R. Todeschini; V. Consonni. .
    • 2.

      Spambase. UCI Machine Learning Repository, 1999

      M. Hopkins; E. Reeber; G. Forman; J. Suermondt. .
    • 3.

      Steel Plates Faults. UCI Machine Learning Repository, 2010

      M. Buscema; S. Terzi; W. Tastle. .
    • 4.

      Turkish Music Emotion. UCI Machine Learning Repository, 2023

      M.B. Er. .
    • 5.

      Batch reinforcement learning approach using recursive feature elimination for network intrusion detection

      Sharma, A; Singh, M. Eng. Appl. Artif. Intell Vol. 136, .
    • 6.

      From explanations to feature selection: Assessing SHAP values as feature selection mechanism

      W.E. Marcílio; D.M. Eler. Proceedings of the 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).
    • 7.

      Enhanced Fault Classification in Bearings: A Multi-Domain Feature Extraction Approach with LSTM-Attention and LASSO

      A. Hatipoğlu; M. Süpürtülü; E. Yılmaz. Arab. J. Sci. Eng(2024).
    • 8.

      Vibration-Based Fault Diagnosis for Railway Point Machines Using VMD and Multiscale Fluctuation-Based Dispersion Entropy

      Y. Sun; Y. Cao; P. Li; G. Xie; T. Wen; S. Su. Chin. J. Electron Vol. 33, (2024).
    • 9.

      Sound Based Degradation Status Recognition for Railway Point Machines Based on Soft-Threshold Wavelet Denoising, WPD, and ReliefF

      Y. Sun; Y. Cao; P. Li; S. Su. IEEE Trans. Instrum. Meas Vol. 73, (2024).
    • 10.

      Influence of one-way ANOVA and Kruskal–Wallis based feature ranking on the performance of ML classifiers for bearing fault diagnosis

      M.A. Jamil; S. Khanam. J. Vib. Eng. Technol Vol. 12, (2024).
    • 11.

      A diabetes prediction model based on Boruta feature selection and ensemble learning

      H. Zhou; Y. Xin; S. Li. BMC Bioinform Vol. 24, (2023).
    • 12.

      Feature selection based on mutual information with correlation coefficient

      H. Zhou; X. Wang; R. Zhu. Appl. Intell Vol. 52, (2022).
    • 13.

      SHAP Value-Based Feature Importance Analysis for Short-Term Load Forecasting

      Y.G. Lee; J.Y. Oh; D. Kim; G. Kim. J. Electr. Eng. Technol Vol. 18, (2022).
    • 14.

      An evaluation of feature selection methods for environmental data

      D. Effrosynidis; A. Arampatzis. Ecol. Inform Vol. 61, (2021).
    • 15.

      Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification

      L. Sun; T. Wang; W. Ding; J. Xu; Y. Lin. Inf. Sci Vol. 578, (2021).
    • 16.

      Optimal Ensemble Learning Based on Distinctive Feature Selection by Univariate ANOVA-F Statistics for IDS

      S. Shakeela; N. Shankar; P. Reddy; T. Tulasi; M. Koneru. Int. J. Electron. Telecommun Vol. 67, (2020).
    • 17.

      Sequential Feature Selection and Machine Learning Algorithm-Based Patient’s Death Events Prediction and Diagnosis in Heart Disease

      R. Aggrawal; S. Pal. SN Comput. Sci Vol. 1, (2020).
    • 18.

      Joint neighborhood entropy-based gene selection method with fisher score for tumor classification

      L. Sun; X.Y. Zhang; Y.H. Qian; J.C. Xu; S.G. Zhang; Y. Tian. Appl. Intell Vol. 49, (2019).
    • 19.

      An embedded feature selection method for imbalanced data classification

      H. Liu; M. Zhou; Q. Liu. IEEE/CAA J. Autom. Sin Vol. 6, (2019).
    • 20.

      Estimating Mutual Information for Discrete-Continuous Mixtures

      W. Gao; S. Kannan; S. Oh; P. Viswanath. arXiv(2018).