• Full Text
    • Scholarly Journal

    Least travel time ray tracer version 2 (LTT v2) adapted to the grid geometry of the OpenIFS atmospheric model

    PDF CiteCite
    Copy URLPrintAll Options

    References (53)

    • 1.
      Bauer, P., Thorpe, A., and Brunet, G.: The Quiet Revolution of Numerical Weather Prediction, Nature, 525, 47–55, 10.1038/nature14956 , 2015.
    • 2.
      Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, C., and Ware, R.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol., 33, 379–386, 2.0.co;2" ext-link-type="DOI">10.1175/1520-0450(1994)033 2.0.co;2 , 1994.
    • 3.
      Boehm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304, 10.1029/2005GL025546 , 2006a.
    • 4.
      Böhm, J. and Schuh, H.: Atmospheric effects in space geodesy, vol. 5, Springer, 10.1007/978-3-642-36932-2 , 2013.
    • 5.
      Born, M., Bhatia, A. B., and Wolf, E.: Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 7th (expanded) edn., Cambridge University Press, Cambridge, ISBN 9781139644181, 1999.
    • 6.
      ECMWF: Destination Earth, https://www.ecmwf.int/en/about/what-we-do/environmental-services-and-future-vision/destination-earth (last access: 9 August 2025), 2024a.
    • 7.
      ECMWF: IFS 43r3 overview, ECMWF [data set], https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+cycle+43r3 (last access: 9 August 2025), 2017a.
    • 8.
      ECMWF: IFS Documentation CY43R3 – Part III: Dynamics and numerical procedures, 3, ECMWF, 10.21957/8l7miod5m , 2017b.
    • 9.
      ECMWF: OpenIFS Data Hub, ECMWF [data set], https://confluence.ecmwf.int/display/OIFS/OpenIFS+Data+Hub (last access: 9 August 2025), 2024b.
    • 10.
      ECMWF: OpenIFS vertical resolution and configurations, https://confluence.ecmwf.int/display/OIFS/4.4+OpenIFS:+Vertical+Resolution+and+Configurations (last access: 9 August 2025), 2022.
    • 11.
      Eresmaa, R., Healy, S., and Tuppi, L.: Least travel time (LTT) operator, Zenodo [code], 10.5281/zenodo.4834412 , 2021.
    • 12.
      Eresmaa, R., Healy, S., Järvinen, H., and Salonen, K.: Implementation of a ray-tracing operator for ground-based GPS Slant Delay observation modeling, J. Geophys. Res.-Atmos., 113, D11114, 10.1029/2007JD009256 , 2008a.
    • 13.
      Eresmaa, R. and Järvinen, H.: An observation operator for ground-based GPS slant delays, Tellus A, 58, 131–140, 2006.
    • 14.
      Hamilton, W. R.: Theory of systems of rays, The Transactions of the Royal Irish Academy, 69–174, 1828.
    • 15.
      Hobiger, T., Ichikawa, R., Koyama, Y., and Kondo, T.: Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models, J. Geophys. Res.-Atmos., 113, D20302, 10.1029/2008jd010503 , 2008.
    • 16.
      Hofmeister, A., Landskron, D., and Böhm, J.: Influence of the horizontal resolution of numerical weather models on ray-traced delays for VLBI analysis, in: Proceedings of the 22nd European VLBI group for geodesy and astrometry working meeting, 162–166, http://hdl.handle.net/20.500.12708/43496 (last access: 9 August 2025), 2015.
    • 17.
      Hofmeister, A.: Determination of path delays in the atmosphere for geodetic VLBI by means of ray-tracing, PhD thesis, Wien, 10.34726/hss.2016.21899 , 2016.
    • 18.
      Hofmeister, A. and Böhm, J.: Application of ray-traced tropospheric slant delays to geodetic VLBI analysis, J. Geodesy, 91, 945–964, 2017.
    • 19.
      Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A. K., Paccini, L., Peinado, A., Praturi, D. S., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C., von Storch, J.-S., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B.: ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales, Geosci. Model Dev., 16, 779–811, 10.5194/gmd-16-779-2023 , 2023.
    • 20.
      IGS: IGS FTP server, ftp://igs.ign.fr/pub/igs/data/ (last access: 9 August 2025), 2024a.