• Full Text
    • Scholarly Journal

    Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges

    PDF CiteCite
    Copy URLPrintAll Options

    References (148)

    • 1.

      Crop water stress detection based on UAV remote sensing systems

      Dong, H; Dong, J; Sun, S; Bai, T; Zhao, D; Yin, Y; Shen, X; Wang, Y; Zhang, Z; Wang, Y. Agric. Water Manag Vol. 303, .
    • 2.

      Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques

      Liu, Y; Feng, H; Fan, Y; Yue, J; Chen, R; Ma, Y; Bian, M; Yang, G. Comput. Electron. Agric Vol. 218, .
    • 3.

      A novel framework to assess apple leaf nitrogen content: Fusion of hyperspectral reflectance and phenology information through deep learning

      Chen, Riqiang; Liu, Wenping; Yang, Hao; Jin, Xiuliang; Yang, Guijun; et al.  Computers and Electronics in Agriculture Vol. 219 p.108816-,  (Apr 2024).
    • 4.

      Incremental learning for crop growth parameters estimation and nitrogen diagnosis from hyperspectral data

      Du, R; Chen, J; Xiang, Y; Zhang, Z; Yang, N; Yang, X; Tang, Z; Wang, H; Wang, X; Shi, H; Li, W. Comput. Electron. Agric Vol. 215, .
    • 5.

      Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging

      Song, Z; Zhang, Z; Yang, S; Ding, D; Ning, J. Comput. Electron. Agric Vol. 179, .
    • 6.

      Backscattering from a randomly rough dielectric surface

      Fung, A; Li, Z; Chen, K.-S. IEEE Transactions on Geoscience and Remote Sensing Vol. 30, .
    • 7.

      Leaf nitrogen content estimation using top-of-canopy airborne hyperspectral data

      Raj, R; Walker, J; Pingale, R; Banoth, B; Jagarlapudi, A. Int. J. Appl. Earth Obs. Geoinf Vol. 104, .
    • 8.

      The MERIS terrestrial chlorophyll index

      Dash, J; Curran, P. Int. J. Remote Sens Vol. 25, .
    • 9.

      PROSAIL-Net: a transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images

      Bhadra, S; Sagan, V; Sarkar, S; Braud, M; Mockler, T; Eveland, A. ISPRS J. Photogramm. Remote Sens Vol. 210, .
    • 10.

      Removing temperature drift and temporal variation in thermal infrared images of a UAV uncooled thermal infrared imager

      Wang, Z; Zhou, J; Ma, J; Wang, Y; Liu, S; Ding, L. ISPRS J. Photogramm. Remote Sens Vol. 203, .
    • 11.

      A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8

      Nguyen, C; Chidthaisong, A; Kieu Diem, P; Huo, L.-Z. Land Vol. 10, Iss. 3, .
    • 12.

      Transformed difference vegetation index (TDVI) for vegetation cover mapping

      A. Bannari; H. Asalhi; P.M. Teillet. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium Vol. Volume 3055, .
    • 13.

      Michigan Microwave Canopy Scattering Models (MIMICS)

      F.T. Ulaby; K. McDonald; K. Sarabandi; M.C. Dobson. Proceedings of the International Geoscience and Remote Sensing Symposium, ‘Remote Sensing: Moving Toward the 21st Century’.
    • 14.

      Estimating near-infrared reflectance of vegetation from hyperspectral data

      Zeng, Y; Hao, D; Badgley, G; Damm, A; Rascher, U; Ryu, Y; Johnson, J; Krieger, V; Wu, S; Qiu, H; Liu, Y; Berry, J; Chen, M. Remote Sens. Environ Vol. 267, .
    • 15.

      A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status

      I Sandholt; K Rasmussen; J Andersen. Remote Sensing of Environment Vol. 79, Iss. 2, (2002): 213-224.
    • 16.

      Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation

      Zhang, C; Liu, J; Shang, J; Cai, H. Sci. Total Environ Vol. 631-632, .
    • 17.

      A Calibration Procedure for Field and UAV-Based Uncooled thermal infrared Instruments

      Aragon, B; Johansen, K; Parkes, S; Malbeteau, Y; Al-Mashharawi, S; Al-Amoudi, T; Andrade, C; Turner, D; Lucieer, A; McCabe, M. Sensors Vol. 20, .
    • 18.

      Exploring the capabilities of hyperspectral remote sensing for soil texture evaluation

      Hosseinpour-Zarnaq, Mohammad; Omid, Mahmoud; Sarmadian, Fereydoon; Ghasemi-Mobtaker, Hassan; Alimardani, Reza; Bohlol, Pouya. Ecological Informatics; Elsevier B.V Vol. 90, (Dec 1, 2025).
    • 19.

      UAV-based LiDAR and multispectral sensors fusion for cotton yield estimation: Plant height and leaf chlorophyll content as a bridge linking remote sensing data to yield

      Bin, Wu; Fan, Liqiang; Xu, Bowei; Yang, Jiajie; Zhao, Rumeng; et al.  Industrial Crops & Products Vol. 230 p.121110-,  (Aug 2025).
    • 20.

      Evaluation of machine-learning algorithms in estimation of relative water content of sorghum under different irrigated environments

      Dharshini, S Divya; Anurag; Kumar, Anil; Satpal; Kumar, Manoj; Priyanka, P; Pugazenthi, K. JOURNAL OF ARID ENVIRONMENTS; ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD Vol. 229, (Aug 2025): 5390 - 5390.