An Ensemble Learning Approach for Facial Emotion Recognition Based on Deep Learning Techniques
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/ensemble-learning-approach-facial-emotion/docview/3249684517/se-2?accountid=208611
PrintAll OptionsReferences (110)
- 1.
Excavating AI Re-excavated: debunking a fallacious account of the JAFFE dataset
Lyons, M. .- Times cited 3 on ProQuest
- 2.
Google Colaboratory—Google
- Times cited 2 on ProQuest
- 4.
Keras Documentation: Keras 3 API Documentation
K. Team. .- Times cited 3 on ProQuest
- 7.
Going deeper in facial expression recognition using deep neural networks
Mollahosseini, A; Chan, D; Mahoor, M. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).- Times cited 2 on ProQuest
- 8.
Facial Expression Recognition Using Convolutional Neural Network with Data Augmentation
Ahmed, T; Hossain, S; Hossain, M; Ul Islam, R; Andersson, K. 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR).- Times cited 2 on ProQuest
- 9.
Diabetic retinopathy diagnosis based on RA-efficientnet
Yi, S; Yang, X; Wang, T; She, F; Xiong, X; He, J. Applied Sciences Vol. 11, Iss. 22, .- Times cited 7 on ProQuest
- 10.
A comparative analysis of eleven neural networks architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions
Yang, Y; Zhang, L; Du, M; Bo, J; Liu, H; Ren, L; Li, X; Deen, MJ. Computers in Biology and Medicine Vol. 139, .- Times cited 4 on ProQuest
- 11.
AffectNet: a database for facial expression, valence, and arousal computing in the wild
Mollahosseini, A; Hasani, B; Mahoor, M. IEEE Trans. Affect. Comput Vol. 10, Iss. 1, .- Times cited 5 on ProQuest
- 12.
Training deep networks for facial expression recognition with crowd-sourced label distribution
Barsoum, E; Zhang, C; Ferrer, C; Zhang, Z. International Conference on Multimodal Interact.- Times cited 2 on ProQuest
- 13.
Emotion recognition from facial expression using deep convolutional neural network
Liliana, D. J. Phys.: Conf. Ser Vol. 1193, .- Times cited 2 on ProQuest
- 14.
Constants across cultures in the face and emotion
Ekman, P; Friesen, W. J. Pers. Soc. Psychol Vol. 17, Iss. 2, .- Times cited 3 on ProQuest
- 17.
The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
P. Lucey; J.F. Cohn; T. Kanade; J. Saragih; Z. Ambadar; I. Matthews. Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops.- Times cited 8 on ProQuest
- 18.
Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark
A. Dhall; R. Goecke; S. Lucey; T. Gedeon. Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV workshops).- Times cited 2 on ProQuest
- 19.
Using Kinect for face recognition under varying poses, expressions, illumination and disguise
B.Y.L. Li; A.S. Mian; W. Liu; A. Krishna. Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV): 186-192.- Times cited 2 on ProQuest
- 20.
Facial Action Units Intensity Estimation by the Fusion of Features with Multi-kernel Support Vector Machine
Z. Ming; J. Rouas; T. Shochi. Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) Vol. Volume 6, : 1-6.- Times cited 2 on ProQuest