• Full Text
    • Scholarly Journal

    Efficient multi-fidelity Kriging simulation for structural reliability analysis with new learning function and stopping criterion

    PDF CiteCite
    Copy URLPrintAll Options

    References (54)

    • 1.
      Marques A, Lam R, Willcox K (2018) Contour location via entropy reduction leveraging multiple information sources. Advances in neural information processing systems. 31
    • 2.
      Wright J, Ma Y (2022) High-dimensional data analysis with low-dimensional models: Principles, computation, and applications. Cambridge University Press.
    • 3.
      Zemed N, Cherradi T, Bouyahyaoui A, et al. (2025) Enhanced active learning for structural reliability analysis: an ensemble SVR Metamodel‐Monte Carlo approach. Quality and Reliability Engineering International
    • 4.

      Learnable quantile polynomial chaos expansion: an uncertainty quantification method for interval reliability analysis

      Zheng, X; Yao, W; Gong, Z. Reliab Eng Syst Saf Vol. 245, .
    • 5.

      A novel active learning Kriging based on improved Metropolis-Hastings and importance sampling for small failure probabilities

      W Zhang; Y Guan; Z Wang. Comput Methods Appl Mech Eng Vol. 435, (2025).
    • 6.

      Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning

      A Dvivedi; P Kumar. Measurement Vol. 243, (2025).
    • 7.

      Efficient seismic reliability and fragility analysis of lifeline networks using subset simulation

      D Lee; Z Wang; J Song. Reliab Eng Syst Saf Vol. 260, (2025).
    • 8.

      Improvement in performance during micromachining of borosilicate glass with temperature-stirring-assisted ECDM

      D Bahar; A Dvivedi; P Kumar. J Braz Soc Mech Sci Eng Vol. 46, Iss. 5, (2024).
    • 9.

      RBF network dynamic sliding mode robust control for overhead cranes with uncertain parameters

      SH Li; SN Lv; Y Gao. J Braz Soc Mech Sci Eng Vol. 46, Iss. 8, (2024).
    • 10.

      Optimization of Rotary-magnet assisted ECSM on borosilicate-glass using machine learning

      D Bahar; A Dvivedi; P Kumar. Mater Manuf Process Vol. 39, (2024): 1101-1121.
    • 11.

      Review of the grey wolf optimization algorithm: variants and applications

      Y Liu; A As’arry; MK Hassan. Neural Comput Appl Vol. 36, Iss. 6, (2024): 2713-2735.
    • 12.

      P-AK-MCS: parallel AK-MCS method for structural reliability analysis

      Z Zhao; ZH Lu; YG Zhao. Probabilistic Eng Mech Vol. 27519, (2024).
    • 13.

      Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure

      C Li; J-R Wen; J Wan; O Taylan; C-W Fei. Reliab Eng Syst Saf Vol. 246, (2024).
    • 14.

      A two-stage dimension-reduced dynamic reliability evaluation (TD-DRE) method for vibration control structures based on interval collocation and narrow bounds theories

      L Wang; J Liu; Z Zhou; Y Li. ISA Trans Vol. 136, (2023): 622-639.
    • 15.

      Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink

      F Pourfattah; MF Kheryrabadi; LP Wang. J Braz Soc Mech Sci Eng Vol. 45, Iss. 3, (2023).
    • 16.

      Optimized design of aero-engine high temperature rise combustion chamber based on "kriging-NSGA-II"

      Yang, Maotao; Tian, Ye; Guo, Mingming; Le, Jialing; Zhang, Hua; et al.  Journal of the Brazilian Society of Mechanical Sciences and Engineering; Heidelberg Vol. 45, Iss. 1,  (Jan 2023): 59.
    • 17.

      An improved Kriging-based approach for system reliability analysis with multiple failure modes

      C Zhou; NC Xiao; MJ Zuo; W Gao. Eng Comput Vol. 38, (2022): 1813-1833.
    • 18.

      Reliability analysis of automobile offset collision front longitudinal beam structure using copula function model

      L Yu; Q Cui; Y Liu. J Jiamusi Univ (Natural Science Edition) Vol. 40, Iss. 4, (2022): 59-61.
    • 19.

      A novel fidelity selection strategy-guided multifidelity kriging algorithm for structural reliability analysis

      J Yi; Y Cheng; J Liu. Reliab Eng Syst Saf Vol. 219, (2022).
    • 20.

      A discrete adjoint based level set topology optimization method for stress constraints

      S Kambampati; H Chung; HA Kim. Comput Methods Appl Mech Eng Vol. 377, (2021).