ABMS-Driven Reinforcement Learning for Dynamic Resource Allocation in Mass Casualty Incidents †
PDF
CiteCite
Copy URL
https://www.proquest.com/scholarly-journals/abms-driven-reinforcement-learning-dynamic/docview/3275515647/se-2?accountid=208611
PrintAll OptionsReferences (15)
- 3.
Agent-Based Simulation Leveraging Declarative Modeling for Efficient Resource Allocation in Emergency Scenarios
Murareţu, Ionuţ; Vultureanu-Albişi, Alexandra; Ilie, Sorin; Bădică, Costin. Artificial Intelligence: Methodology, Systems, and Applications: 19th International Conference, AIMSA 2024. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence (15462), (2025). - 5.
Stable-Baselines3: Reliable Reinforcement Learning Implementations
A. Raffin; A. Hill; A. Gleave; A. Kanervisto; M. Ernestus; N. Dormann. J. Mach. Learn. Res Vol. 22, (2021).- Times cited 22 on ProQuest
- 7.
Assessment of public hospital governance in Romania: lessons from 10 case studies
A Duran; T Chanturidze; A Gheorghe; A Moreno. Int J Health Pol Manag Vol. 8, Iss. 4, (2019): 199-210.- Times cited 2 on ProQuest
- 11.
Proximal policy optimization algorithms. arXiv
John Schulman. Proximal policy optimization algorithms. arXiv(2017).- Times cited 52 on ProQuest
- 12.
Romania: Health System Review
C. Vlădescu; G. Scîntee; V. Olsavszky; C. Hernández-Quevedo; A. Sagan. Health Syst. Transit Vol. 18, (2016).- Times cited 2 on ProQuest
- 13.
Use of an agent-based simulation model to evaluate a mobile-based system for supporting emergency evacuation decision making
Y. Tian; T.S. Zhou; Q. Yao; M. Zhang; J.S. Li. J. Med. Syst Vol. 38, (2014).- Times cited 2 on ProQuest
- 14.
Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources
Schmidt, R; Geisler, S; Spreckelsen, C. BMC Medical Informatics and Decision Making Vol. 13, Iss. January, (2013): 3-3.- Times cited 7 on ProQuest