• Full Text
    • Scholarly Journal

    ABMS-Driven Reinforcement Learning for Dynamic Resource Allocation in Mass Casualty Incidents †

    PDF CiteCite
    Copy URLPrintAll Options

    References (15)

    • 1.

      Experiments with Declarative Modeling of Maximum Clique Problem Using Solvers Supported by MiniZinc

      I. Murareţu; C. Bădică. Proceedings of the 2020 24th International Conference on System Theory, Control and Computing (ICSTCC).
    • 2.

      AI-driven triage in emergency departments: A review of benefits, challenges, and future directions

      Da'costa, Adebayo; Teke, Jennifer; Origbo, Joseph E; Osonuga, Ayokunle; Egbon, Eghosasere; et al.  International Journal of Medical Informatics Vol. 197,  (May 2025): 105838.
    • 3.

      Agent-Based Simulation Leveraging Declarative Modeling for Efficient Resource Allocation in Emergency Scenarios

      Murareţu, Ionuţ; Vultureanu-Albişi, Alexandra; Ilie, Sorin; Bădică, Costin.  Artificial Intelligence: Methodology, Systems, and Applications: 19th International Conference, AIMSA 2024. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence (15462), (2025).
    • 4.

      Reinforcement Learning Model for Mass Casualty Triage Taking into Account the Medical Capability

      B. Park; N. Cho. J. Soc. Disaster Inf Vol. 19, (2023).
    • 5.

      Stable-Baselines3: Reliable Reinforcement Learning Implementations

      A. Raffin; A. Hill; A. Gleave; A. Kanervisto; M. Ernestus; N. Dormann. J. Mach. Learn. Res Vol. 22, (2021).
    • 6.

      A concise review of AI-based solutions for mass casualty management

      M.S. Nistor; T.S. Pham; S. Pickl; C. Gaindric; S. Cojocaru; S.W. Pickl; V. Lytvynenko; M. Zharikova; V. Sherstjuk. CITRisk, Vol. 2805, CEUR Workshop Proceedings(2020).
    • 7.

      Assessment of public hospital governance in Romania: lessons from 10 case studies

      A Duran; T Chanturidze; A Gheorghe; A Moreno. Int J Health Pol Manag Vol. 8, Iss. 4, (2019): 199-210.
    • 8.

      Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital

      Chang, Jian; Zhang, Lingjuan.  JOURNAL OF COMBINATORIAL OPTIMIZATION Vol. 37, Iss. 1,  (Jan 2019).
    • 9.

      A dynamic simulation–optimization approach for managing mass casualty incidents

      Niessner, Helmut; Rauner, Marion S; Gutjahr, Walter J.  Operations Research for Health Care Vol. 17,  (Jun 2018): 82-100.
    • 10.

      Modeling and Optimization of Pickup and Delivery Problem Using Constraint Logic Programming

      A. Bădică; C. Bădică; F. Leon; I. Buligiu; I. Lirkov; S. Margenov. Large-Scale Scientific Computing(2018).
    • 11.

      Proximal policy optimization algorithms. arXiv

      John Schulman. Proximal policy optimization algorithms. arXiv(2017).
    • 12.

      Romania: Health System Review

      C. Vlădescu; G. Scîntee; V. Olsavszky; C. Hernández-Quevedo; A. Sagan. Health Syst. Transit Vol. 18, (2016).
    • 13.

      Use of an agent-based simulation model to evaluate a mobile-based system for supporting emergency evacuation decision making

      Y. Tian; T.S. Zhou; Q. Yao; M. Zhang; J.S. Li. J. Med. Syst Vol. 38, (2014).
    • 14.

      Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources

      Schmidt, R; Geisler, S; Spreckelsen, C. BMC Medical Informatics and Decision Making Vol. 13, Iss. January, (2013): 3-3.
    • 15.

      Modeling Emergency Medical Response to a Mass Casualty Incident Using Agent Based Simulation

      Wang, Yu; Luangkesorn, K Louis; Shuman, Larry.  Socio-Economic Planning Sciences Vol. 46, Iss. 4,  (December 2012): 281-290.