It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present BreizhCrops, a novel benchmark dataset for the supervised classification of field crops from satellite time series. We aggregated label data and Sentinel-2 top-of-atmosphere as well as bottom-of-atmosphere time series in the region of Brittany (Breizh in local language), north-east France. We compare seven recently proposed deep neural networks along with a Random Forest baseline. The dataset, model (re-)implementations and pre-trained model weights are available at the associated GitHub repository (https://github.com/dl4sits/breizhcrops) that has been designed with applicability for practitioners in mind. We plan to maintain the repository with additional data and welcome contributions of novel methods to build a state-of-the-art benchmark on methods for crop type mapping.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chair of Remote Sensing Technology, Department of Aerospace and Geodesy, Technical University of Munich, Germany; Chair of Remote Sensing Technology, Department of Aerospace and Geodesy, Technical University of Munich, Germany
2 Univ. Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France; Univ. Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France