It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Many infrastructure domains required material research as an initial phase of project development life cycle. One such futuristic domain is bridge engineering, where there is a critical need of study of environmental impact and material strength. This paper focuses on the premature deterioration of concrete infrastructures exposed to sodium chloride (NaCl) salts in the presence of thermal cycling. NaCl salts can cause damage and rapid deterioration of concrete due to physical and chemical aspects, including salt scaling, corrosion of rebars, ice and salt crystallizations and/or deleterious chemical reactions. This paper discusses how NaCl solutions can cause damage in concrete in the presence of thermal cycling and how such damage can be mitigated. This paper at-tempts to provide an advanced thermo-chemo-physical understanding of NaCl salt damage in concrete. This paper also discusses specific structural and chemical alterations during thermal cycling that are caused by NaCl to develop damage to concrete. Results indicates that the heat-cool cycling induces the formation of mirabilite (Na2SO4.10H2O) in concrete exposed to high concentrations of NaCl solution. The mirabilite formation is found to be due to the release of sulfate ions from the concrete matrix.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer