It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Images with large volumes are generated daily with the advent of advanced sensors and platforms (e.g., satellite, unmanned autonomous vehicle) of data acquisition. This incurs issues on the storage, processing, and transmission of images. To address such issues, image compression is essential and can be achieved by lossy and/or lossless approaches. With lossy compression, a high compression ratio can usually be achieved but the original data can never be completely recovered. On the other hand, with lossless compression, the original information is well reserved. Lossless compression is very desirable in many applications such as remote sensing, geological surveying. Shannon's source coding theorem has defined the theoretical limits of compression ratio. However, some researchers have discovered that some compression techniques have achieved a compression ratio that is higher than the theoretical limits. Then, two questions naturally arise, i.e., “When this happens?” and “Why this happens?”. This study is dedicated to giving answers to these two questions. Six algorithms are used to compress 1650 images with different complexities. The experimental results show that the generally acknowledged Shannon’s coding theorem is still good enough for predicting compression ratio by the algorithms with consideration of statistical information only, but not capable of predicting compression ratio by the algorithms with consideration of configurational information of pixels. Overall, this study indicates that new empirical (or theoretical) models for predicting lossless compression ratio can be built with metrics capturing configurational information.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
2 Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Faculty of Geosciences and Environmental Engineering & State-Province Joint Engineering Laboratory in Spatial Information Technology for High-Speed Railway Safety, Southwest Jiaotong University, Chengdu, China