It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As one of the most common Titanium alloys, Ti-6Al-4V faces new challenges concerning the ecological footprint. Due to the current processes, a high metal chip pollution leads to a Buy-to-Fly of 25:1.
In this study the parameter / microstructure relationship of Ti-64 on the mechanical properties are discussed. Wire Arc Additive Manufacturing (WAAM) was applied to build samples for microstructural analyses and compression tests. A stress relief (SR) and a solution treatment and annealing (STA) was performed. It was found that SR had no influence on multi-layered samples due to intrinsic heat-treatment. A STA heat-treatment led to a reduction in the mechanical strength. Helium as process gas resulted in an increased mechanical strength due to higher heat capacity compared to argon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer