It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A precise identification of pore fluid pressure (PP) is of great significance, specifically, in terms of drilling safety and reservoir management. Despite numerous work have been carried out for prediction of PP in oil reservoirs, but there still exists a tangible lack of such work in gas hosting rocks. The present study aims to discuss and evaluate the application of a number of existing methods for prediction of PP in two selected giant carbonate gas reservoirs in south Iran. For this purpose, PP was first estimated based on the available conventional log data and later compared with the PP suggested by Reservoir Formation Test (RFT) and other bore data. At the end, it has been revealed that while PP prediction is highly dependent on the type of litho logy in carbonates, the effect of fluid type is negligible. Moreover, the velocity correlations work more efficiently for the pure limestone/dolomite reservoirs compared with the mixed ones.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer