It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The article presents a three-phase mathematical model of asynchronous machine with wound rotor based on differential equations. The equations are resolved with respect to the derivatives of flux linkages. The description of the computer program in the Matlab Simulink that implements the model and allows to simulate transients of the asynchronous motor is present. A simulation model of a three-phase asynchronous machine with wound rotor, which allows to investigate static and dynamic operating ranges when power converters are connected to the rotor circuit has been obtained. The results of approbation of the obtained simulation model in the Matlab Simulink environment and experimental research of asynchronous engine with wound rotor, driving into the asynchronous-valve cascade, are presented. The results of experimental studies of the asynchronous machine under sinusoidal voltage using a stand based on the asynchronous-valve cascade, and comparison of the oscillograms obtained with simulation results of the proposed model are presented. The comparison of experimental and calculated oscillograms of the current of the investigated asynchronous motor can be concluded on satisfactory accuracy of the proposed model and the possibility of its application for modeling and analysis of asynchronous electric drives.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer