It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biopharmaceutical proteins are usually produced by culturing recombinant Chinese hamster ovary (CHO) cells. High producer cell lines are screened from transfected cells with random integration of target genes. Since transgene expression is susceptible to the surrounding environment of the integrated genomic locus, producer cell lines should be selected from a large number of recombinant cells with heterogeneous transgene insertion. In contrast, targeted integration into a characterized genomic locus allows for predictable transgene expression and less clonal variability, and thus stable production of target proteins can be expected. Genome editing technology based on programmable nucleases has recently emerged as a versatile tool for precise editing of target locus in the cell genome. Here, we demonstrated targeted knock-in of transgenes into the hypoxanthine phosphoribosyltransferase (hprt) locus of CHO cells using CRISPR/Cas9 and CRISPR-mediated precise integration into target chromosome (PITCh) systems. We also generated knock-in CHO cells based on the homology-independent targeted integration (HITI) system. We evaluated the knock-in efficiency of transgenes into the hprt locus using these systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer