It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A phase margin symbolic expression of a two stage Miller compensated operational amplifier is computed in this paper. Using this expression, an analysis to evaluate the influence of the Miller and load capacitance on phase margin is performed. This way, a designer can rapidly choose the optimal set of values to fulfil an imposed phase margin. The phase margin expression is based on poles/zeros symbolic expressions obtained using a symbolic LR algorithm able to compute both the numerical values and the approximate symbolic expressions of poles and zeros of a circuit. The numerical values obtained with this algorithm are compared with those computed by SPECTRE. The example is a two stage Miller compensated operational amplifier designed in a 180nm CMOS technology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer