It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Landscape-scale forest restoration treatments are planned for four national forests in Northern Arizona: the Coconino, Kaibab, Tonto, and Apache-Sitgreaves National Forests. The first analysis area comprises 900,000 acres on the Coconino and Kaibab National Forests where the U.S. Forest Service is proposing restoration activities on approximately 600,000 acres over a ten year period pending acceptance of an Environmental Impact Statement. These forest restoration treatments are intended to accomplish a number of objectives including reducing the threat of catastrophic wild fire and subsequent flooding and to restore forest health, function, and resiliency. Previous studies suggest that in semi-arid, ponderosa pine watersheds there was a possibility to increase surface water yields 15-40% when basal area was reduced by 30-100%. Because of these results, there is considerable interest in the amount of increased water yield that may recharge from these activities.
The objectives of this study were to 1) examine the state of knowledge of forest restoration thinning and its hydrological responses and to evaluate the quality and type of related references that exist within the literature and 2) simulate possible changes in recharge and aquifer response following forest restoration treatments and climate change. A systematic review process following the guidelines suggested by the Collaboration for Environmental Evidence was conducted to examine literature relevant to this topic. The Northern Arizona Regional Groundwater-Flow Model was used to simulate the changes expected from forest restoration treatments and climate change.
The systematic review returned 37 references that were used to answer questions regarding tree removal and the associated hydrological responses. Data from individual studies suggest that forest treatments that reduce tree density tend to increase surface water yield and groundwater recharge while reducing evapotranspiration. On average, there was a 0-50% increase in surface water yield when 5-100% of a watershed was treated. Groundwater results were less conclusive and there was no overall correlation for all studies between percent area treated and groundwater recharge. A majority of studies (33 of 37) reported statistically significant results, either as increases in water yield, decreases in evapotranspiration, or increases in groundwater table elevation. Results are highly variable, and diminish within five to ten years for water yield increases and even quicker (< 4 years) for groundwater table heights.
Using a groundwater-flow model, it was estimated that over the ten-year period of forest restoration treatment there was a 2.8% increase in annual recharge to aquifers in the Verde Valley compared to conditions that existed in 2000-2005. However, these increases were assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush. Furthermore, estimated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results should be used in conjunction with other data such as those recovered from paired-watershed studies to help guide decision-making with respect to groundwater supply and demand issues, operations, and balancing the needs of both natural and human communities.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
Supplemental files
Document includes 1 supplemental file(s).
Special programs or plug-ins may be required to view some files.
The supplemental file or files you are about to download were provided to ProQuest by the author as a part of a dissertation or thesis. The supplemental files are provided "AS IS" without any warranty. ProQuest is not responsible for the content, format or impact of the supplemental file(s) on your system. In some cases, the file type may be unknown or may be a .exe file. We recommend caution as you open such files.
Copyright of original materials contained in a supplemental files is retained by the author and your access to the supplemental files is subject to the ProQuest Terms and Conditions of use.
Downloading time depends on the size of the file(s) that you are downloading. System may take some time to download them.Please be patient.