It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pakistan is facing a severe energy crisis which results in power cuts across the country. This situation seriously disturbs everyday life, business, and economic activities. The household sector in Pakistan is the primary consumer of electricity. A reasonable sum of this electricity is used for heating and cooling residential buildings, which can be reduced by adopting passive design strategies. This PhD research aims to provide informed decision support to design and construct climate-responsive houses in the cold semi-arid climate of Quetta, considering the appropriate and locally adapted low-tech solutions to improve residential buildings' indoor thermal comfort. Firstly, a literature review was done to understand the existing housing, comfort, and energy situation in Pakistan. An inventory of the current housing stock was then created to identify housing characteristics, construction types, and materials. The most common housing type was analysed for indoor climate, including monitoring indoor temperature and humidity, comfort perception and energy usage behaviour. Semi-structured interviews were conducted with the residents to get insights on their comfort perception, clothing, behavioural adaptations, lifestyle etc. Then a benchmark study was performed by selecting the most representative house. The representative house's virtual model was analysed using dynamic simulation and calibrated based on actual monitored data. Four comfort models were compared to identify the best fit-t-context model. A parametric analysis was done using passive design strategies to improve indoor thermal comfort. A sensitivity analysis of 21 design variables was performed to identify the most influential passive design strategies, which can be used in the climate of Quetta. A materialization survey was done to determine the locally available and manufactured materials. Based on this PhD research analysis and findings, a prescriptive guide was developed to provide informed decision support for architects to design comfortable and climate-responsive houses. The prescriptive guide was then tested and validated. A usability test was performed among the architects and architecture. The results show that the prescriptive guide provides enhanced decision support compared to the Building Code of Pakistan. In the end, recommendations are made for the regulators and further research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer