It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Marine food chains are highly stressed by aggressive fishing practices and environmental damage. Aquaculture has increasingly become a source of seafood which spares the deleterious impact to wild fisheries, but it requires continuous water quality data to successfully grow and harvest fish. Aerial drones have great potential to monitor large areas quickly and efficiently. The Hybrid Aerial Underwater Robotic System (HAUCS) is a swarm of unmanned aerial vehicles (UAVs) and underwater measurement devices designed to collect water quality data of aquaculture ponds. The routing of drones to cover each fish pond on an aquaculture farm can be reduced to the Vehicle Routing Problem (VRP). A dataset is created to simulate the distribution of ponds on a farm and is used to assess the HAUCS Path Planning Algorithm (HPP). Its performance is compared with the Google Linear Optimization Package (GLOP) and a Graph Attention Model (GAM) for routing around the simulated farms. The three methods are then implemented on a team of waterproof drones and experimentally verified at Southern Illinois University’s (SIU) Aquaculture Research Center. GLOP and GAM are demonstrated to be efficient path planning methods for small farms, while HPP is likely to be more suited to large farms. HAUCS shows great value as a future direction for intelligent aquaculture, but issues with obstacle avoidance and robust waterproofing need to be addressed before commercialization. The future of aquaculture promises more integrated and sustainable operations by mimicking natural systems and leveraging deeper understandings of biology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer