It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Silhouettes are useful features to reconstruct the object shape when the object is textureless or the shape classes of objects are unknown. In this dissertation, we explore the problem of reconstructing the shape of challenging objects from silhouettes under real-world conditions such as the presence of silhouette and camera calibration error. This problem is called the Shape from Inconsistent Silhouettes problem. A psuedo-Boolean cost function is formalized for this problem, which penalizes differences between the reconstruction images and the silhouette images, and the Shape from Inconsistent Silhouette problem is cast as a psuedo-Boolean minimization problem. We propose a memory and time efficient method to find a local minimum solution to the optimization problem, including heuristics that take into account the geometric nature of the problem. Our methods are demonstrated on a variety of challenging objects including humans and large, thin objects. We also compare our methods to the state-of-the-art by generating reconstructions of synthetic objects with induced error.
We also propose a method for correcting camera calibration error given silhouettes with segmentation error. Unlike other existing methods, our method allows camera calibration error to be corrected without camera placement constraints and allows for silhouette segmentation error. This is accomplished by a modified Iterative Closest Point algorithm which minimizes the difference between an initial reconstruction and the input silhouettes. We characterize the degree of error that can be corrected with synthetic datasets with increasing error, and demonstrate the ability of the camera calibration correction method in improving the reconstruction quality in several challenging real-world datasets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer