It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The failure and fragmentation of ductile materials is important to the understanding of key structural materials. Ductile materials fail through the nucleation, growth, and coalescence of voids. A numerical study has been developed which couples these key stages of ductile failure, an elastic-viscoplastic material model and wave propagation. The governing equations are integrated through the method of characteristics allowing for the dynamic propagation of waves in the sample and the communication of information thereby such simulations are utilized to predict failure spacing in a ductile material within a uniaxial strain approximation. The final failure spacing is a function of the complex interaction of loading and stress release that accompanies the localization of damage and eventual fracture of material. The average fragment size predicted by the model exhibits two regimes as the rate of loading increases. At low strain rates, a plateau is evident in which the average fragment size shows strong dependence on material properties but little dependence on loading rate. In the high strain rate regime, inertia begins to dominate as the average fragment size decreases with strain rate but has little dependence on the material.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer