Abstract
Sleep stage classification is a significant measure in assessing sleep quality and diagnosing sleep disorders. Many researchers have investigated automatic sleep stage classification methods and achieved promising results. However, these methods ignored the heterogeneous information fusion of the spatial–temporal and spectral–temporal features among multiple-channel sleep monitoring signals. In this study, we propose an interpretable multi-stream fusion network, named MSF-SleepNet, for sleep stage classification. Specifically, we employ Chebyshev graph convolution and temporal convolution to obtain the spatial–temporal features from body-topological information of sleep monitoring signals. Meanwhile, we utilize a short time Fourier transform and gated recurrent unit to learn the spectral–temporal features from sleep monitoring signals. After fusing the spatial–temporal and spectral–temporal features, we use a contrastive learning scheme to enhance the differences in feature patterns of sleep monitoring signals across various sleep stages. Finally, LIME is employed to improve the interpretability of MSF-SleepNet. Experimental results on ISRUC-S1 and ISRUC-S3 datasets show that MSF-SleepNet achieves competitive results and is superior to its state-of-the-art counterparts on most of performance metrics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




