Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modeling distributed parameter systems (DPSs) is challenging due to their strong nonlinearity and spatiotemporal coupling. In this study, a three-dimensional fuzzy modeling method combining genetic algorithm (GA)-based automatic clustering and hierarchical extreme learning machine (HELM) is proposed for DPS modeling. The method utilizes GA-based automatic clustering to learn the premise part of 3D fuzzy rules, while HELM is employed to learn spatial basis functions and construct a complete fuzzy rule base. This approach effectively captures the spatiotemporal coupling characteristics of the system and mitigates the information loss commonly observed in dimensionality reduction in traditional fuzzy modeling methods. Through experimental verification, the proposed method is successfully applied to a rapid thermal chemical vapor deposition system. The experimental results demonstrate that the method can accurately predict temperature distribution and maintain good robustness under noise and disturbances.

Details

Title
A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems
Author
Zhou, Gang; Zhang, Xianxia  VIAFID ORCID Logo  ; Wang, Tangchen; Wang, Bing
First page
364
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165831680
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.