Content area

Abstract

It is proposed that it is possible to identify some of the problems that had to be solved in the course of evolution for the red blood cell (RBC) to achieve its present day effectiveness, by studying the behavior of systems featuring different, partial characteristics of its membrane. The appropriateness of the RBC volume to membrane area ratio for its circulation in the blood is interpreted on the basis of an analysis of the shape behavior of phospholipid vesicles. The role of the membrane skeleton is associated with preventing an RBC from transforming into a budded shape, which could form in its absence due to curvature-dependent transmembrane protein-membrane interaction. It is shown that, by causing the formation of echinocytes, the skeleton also acts protectively when, in vesicles with a bilayer membrane, the budded shapes would form due to increasing difference between the areas of their outer and inner layers.[PUBLICATION ABSTRACT]

Details

Title
Red blood cell shape and deformability in the context of the functional evolution of its membrane structure
Author
Svetina, Sasa
Pages
171-81
Publication year
2012
Publication date
Jun 2012
Publisher
Springer Nature B.V.
ISSN
1425-8153
e-ISSN
1689-1392
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1008951738
Copyright
© Versita Warsaw and Springer-Verlag Wien 2012