From: 7th German Conference on Chemoinformatics: 25 CIC-Workshop Goslar, Germany 6-8 November 2011
Author details 1-Institute of Pharmacy, Pharmaceutical Chemistry, University Halle-Wittenberg, Halle, 06120, Germany
Supplemental Information:
Title: 7th German Conference on Chemoinformatics: 25 CIC-Workshop
Editor: Frank Oellien, Uli Fechner and Thomas Engel
Note: Meeting abstracts
Accurate scoring of protein-ligand interactions for docking, binding-affinity prediction and virtual screening campaigns is still challenging. Despite great efforts, the performance of existing scoring functions strongly depends on the target structure under investigation. Recent developments in the direction of target-class-specific scoring methods and machine-learning-based procedures reveal significant performance improvement in binding mode and affinity prediction.
However, there is no open-source framework that combines such sophisticated techniques with molecular docking algorithms to make them simply applicable for virtual screening. Therefore, the aim of this work is the implementation of general tools within the open-source framework ParaDockS [1] to obtain target-class-specific scoring functions. These scoring functions are based on knowledge-based atom-pair potentials which can be used in an additive manner (PMF-Score) to score protein-ligand complexes. Because ParaDockS already includes algorithms for protein-ligand docking, every new obtained scoring function can be immediately applied.
Recently it was shown, that atom-pair potentials are also useful for training machine-learning models like support vector machines or random forests [2]. Such methods circumvent a particular functional form for the scoring function and thereby implicitly capture binding contributions that are hard to model explicitly. Our goal is to implement different machine-learning procedures within the ParaDockS framework to provide further possibilities for scoring protein-ligand complexes.
In a first test and validation study, we applied this workflow on kinase data sets, but in principle it is applicable to every target class with enough structural data. In further studies we want to obtain a set of different scoring functions that are biased to a certain target class and can be used for docking and scoring within ParaDockS.
[1] Meier , Pippel , Brandt , Sippl , Baldauf , ParaDockS - A framework for Molecular Docking with Population-Based MetaheuristicsIn J Chem Inf Model,2010,50:879-889.
[2] Li , Khanna , Jo , Wang , Ashpole , Hudmon , Meroueh , Target-Specific Support Vector Machine Scoring in Structure-Based Virtual Screening: Computational Validation, In Vitro Testing in Kinases, and Effects on Lung Cancer Cell ProliferationIn J Chem Inf Model,2011,51:755-759.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2012 Scharfe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Doc number: P35
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer