Abstract

Blood vessels in mammalian embryos develop from initial aggregates of endothelial cell (EC) progenitors, which coordinate the opening and stabilization of central vascular lumens, all while under progressively increasing flow and pressure from blood circulation. Mechanical cues exerted by shear stress from the blood flow remodel an initial vascular plexus into a ramifying array of large and small vessels. As plasma starts to fill vascular lumens, these forces trigger changes in EC gene expression and dynamic alterations in cell shape and cell adhesion, as cuboidal angioblasts elongate and flatten into ECs. Little is known about how embryonic ECs sense and transduce hemodynamic signals as vessels form in vivo. Here, we report a critical requirement for the Lats1 and Lats2 Hippo pathway kinases during this process. We show that when Lats1/2 are genetically deleted in ECs, embryos develop severe defects in blood vessel formation, which lead to embryonic lethality by E11.5. We find that initial vessel patterning and circulation initiate properly, however remodeling of the initial vascular plexus fails due to lumen collapse and altered blood flow. When Lats1/2 are knocked down using siRNA approaches in cultured ECs, cells fail to elongate and polarize, similar to ECs in the mutant embryos. In addition, VE-cadherin (VEcad) based junctions fail to mature under shear stress. These data show that Lats1/2 deficient cells no longer respond to laminar shear stress, both in vivo and in vitro. This work identifies the Hippo pathway kinases Lats1 and Lats2 as critical transducers of biomechanical cues during the early steps of blood vessel remodeling. This study will provide new targets for treatment of vascular diseases and new directions for efforts to generate vascularized tissues for replacement therapies.

Competing Interest Statement

The authors have declared no competing interest.

Details

Title
Lats1/2 are essential for developmental vascular remodeling and biomechanical adaptation to shear stress
Author
Cowdin, Mitzy A; Pramanik, Tuli; Mohr-Allen, Shelby R; Fu, Yuting; Mills, Austin; Varner, Victor D; Davis, George E; Cleaver, Ondine
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2024
Publication date
Dec 2, 2024
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
3134982059
Copyright
© 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.