It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
While mechanical behavior of the adult human lower extremity long bones under loading has been studied extensively, the same is not true for the adult human humerus. Mechanical data reported for cadaveric humeri and anatomic humerus models are limited to stiffness and rigidity. Strain characteristics of the humerus diaphysis as a function of loading provide a valuable addition to the currently limited knowledge. The objective of this dissertation was to accomplish this goal, using numerical/finite element (FE) methods applied to a standard anatomic humerus model (Reference-Humerus) that was developed from the NIH Visible Human Project for this purpose.
Four phases were defined, namely, (a) experimental strain (and stiffness and rigidity) characterization of structural properties of an existing humerus model, HS4 (Model 3404, Pacific Research Labs, USA), in four-point bending (under physiologic magnitude loads), (b) anatomic characterization of the Reference-Humerus model, and (c) development and experimental (four-point bending) validation of an FE model of the Reference-Humerus (under physiologic magnitude loads), followed by (d) study of strain characteristics of the humerus diaphysis under simplified physiologic loading, modeled using Deltoid and Supraspinatus action during shoulder abduction.
(a) The HS4 demonstrated linear mechanical behavior under physiologic magnitude loads. The bending stiffness, rigidity, and mean principal strain data pointed to a stiffer medio-lateral plane compared with the antero-posterior plane for this specimen. (b) The Reference-Humerus's measured osteoanatomic characteristics lay near/within respective ranges for cadaveric humeri, thus establishing anatomic validity. (c) Experimental validation of the Reference-Humerus FE model that incorporated the cortex-simulation material's experimentally-derived elastic modulus range established its validity for biomechanical applications. (d) Reference-Humerus FE modeling of simplified physiologic loading demonstrated changes in maximum and minimum principal strain magnitudes and distribution in the humerus diaphysis as a function of shoulder abduction, external load, and Supraspinatus weakness.
This dissertation provides novel insight into strain behavior of the humerus under loading as well as its surgical osteoanatomic characteristics. In addition, the anatomically characterized Reference-Humerus developed as part of this dissertation is a biomechanical tool with future biomechanical and research applications such as humeral fracture risk evaluation in musculoskeletal pathology, presurgical planning/surgical simulation, and implant design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer