Abstract

Doc number: 18

Abstract

Background: In the past decade spherical and rod-like viruses have been used for the design and synthesis of new kind of nanomaterials with unique chemical positioning, shape, and dimensions in the nanosize regime. Wild type and genetic engineered viruses have served as excellent templates and scaffolds for the synthesis of hybrid materials with unique properties imparted by the incorporation of biological and organic moieties and inorganic nanoparticles. Although great advances have been accomplished, still there is a broad interest in developing reaction conditions suitable for biological templates while not limiting the material property of the product.

Results: We demonstrate the controlled synthesis of copper nanorods and nanowires by electroless deposition of Cu on three types of Pd-activated rod-like viruses. Our aqueous solution-based method is scalable and versatile for biotemplating, resulting in Cu-nanorods 24-46 nm in diameter as measured by transmission electron microscopy. Cu2+ was chemically reduced onto Pd activated tobacco mosaic virus, fd and M13 bacteriophages to produce a complete and uniform Cu coverage. The Cu coating was a combination of Cu0 and Cu2 O as determined by X- ray photoelectron spectroscopy analysis. A capping agent, synthesized in house, was used to disperse Cu-nanorods in aqueous and organic solvents. Likewise, reactions were developed to produce Cu-nanowires by metallization of polyaniline-coated tobacco mosaic virus.

Conclusions: Synthesis conditions described in the current work are scalable and amenable for biological templates. The synthesized structures preserve the dimensions and shape of the rod-like viruses utilized during the study. The current work opens the possibility of generating a variety of nanorods and nanowires of different lengths ranging from 300 nm to micron sizes. Such biological-based materials may find ample use in nanoelectronics, sensing, and cancer therapy.

Details

Title
Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires
Author
Zhou, Jing C; Soto, Carissa M; Chen, Mu-San; Bruckman, Michael A; Moore, Martin H; Barry, Edward; Ratna, Banahalli R; Pehrsson, Pehr E; Spies, Bradley R; Confer, Tammie S
Pages
18
Publication year
2012
Publication date
2012
Publisher
BioMed Central
e-ISSN
14773155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1029965529
Copyright
© 2012 Zhou et al.; licensee BioMed Central Ltd; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.