It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Introduction
Estimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images.
Methods
A total of 1309 patients with cognitive impairment scanned with [11C]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used for evaluation.
Results
The prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader’s classification with 99% accuracy. There was a high correlation between reference and predicted SUVR (R2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status.
Conclusion
The proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Copenhagen, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)
2 University of Copenhagen, Danish Dementia Research Centre, Rigshospitalet, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X)