Abstract
Doc number: S13
Abstract
Background: Currently, the tandem mass spectrometry (MSMS) of peptides is a dominant technique used to identify peptides and consequently proteins. The peptide fragmentation inside the mass analyzer typically offers a spectrum containing several different groups of ions. The mass to charge (m/z ) values of these ions can be exactly calculated following simple rules based on the possible peptide fragmentation reactions. But the (relative) intensities of the particular ions cannot be simply predicted from the amino-acid sequence of the peptide. This study presents initial work towards developing a theoretical fundamental approach to ion intensity elucidation by utilizing quantum mechanical computations.
Methods: MSMS spectra of the doubly charged GAVLK peptide were collected on electrospray ion trap mass spectrometers using low energy modes of fragmentation. Density functional theory (DFT) calculations were performed on the population of ion precursors to determine the fragment ion intensities corresponding to a Boltzmann distribution of the protonation of nitrogens in the peptide backbone amide bonds.
Results: We were able to a) predict the y and b ions intensities order in concert with the experimental observation; b) predict relative intensities of y ions with errors not exceeding the experimental variation.
Conclusions: These results suggest that the GAVLK peptide fragmentation process in the ion trap mass spectrometer is predominantly driven by the thermodynamic stability of the precursor ions formed upon ionization of the sample. The computational approach presented in this manuscript successfully calculated ion intensities in the mass spectra of this doubly charged tryptic peptide, based solely on its amino acid sequence. As such, this work indicates a potential of incorporating quantum mechanical calculations into mass spectrometry based algorithms for molecular identification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




