It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The relationship between the motion of a pair of vertebras and the ensuing loads exerted by the intervertebral joint have been studied extensively. In the realm of small and quasi-static motion, this relationship is approximately linear and can be modeled using a 6 × 6 stiffness matrix. Efforts to determine the elements of these stiffness matrices as well as to apply them in models of the joint have been underway since this joint model was first proposed in the early 1970s. Meanwhile, a considerable amount of theoretical work has been conducted in identifying linear mappings that relate increments in force and moment components acting on a system of rigid bodies to the infinitesimal motions that produced them. Most prominent among these is the Cartesian stiffness matrix parameterization. Alongside these developments, advancements in musculoskeletal software modeling has led to the developments of various software platforms capable of performing the underlying computations necessary to study musculoskeletal structures. The motion of articulating bodies in this case is defined using joints. In the case of the spine, bushing elements – similar to the rubber bushings employed in vehicular dynamics – are a popular alternative. Unfortunately, numerous difficulties exist in adapting these bushing elements to mimic the stiffness matrix model of the intervertebral joint.
In this dissertation, we connect the inter-related subjects above to pave the way for a more comprehensive model of the intervertebral joint. To do this, we derive the Cartesian stiffness matrix associated with the joints of the spine using arguments based on energetics consideration and the Euler angle parameterization of rotations. We next show how this Cartesian stiffness matrix can be related to elements of the experimentally measured stiffness matrix of the intervertebral joint. Finally, we apply the resulting stiffness matrices in a model of the lumbar spine developed in OpenSim using a stiffness matrix plugin we created specific to the intervertebral joint.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer