Full Text

Turn on search term navigation

Copyright Nature Publishing Group Sep 2012

Abstract

Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C61 solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.

Details

Title
Spin-enhanced organic bulk heterojunction photovoltaic solar cells
Author
Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy
Pages
1043
Publication year
2012
Publication date
Sep 2012
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1069471543
Copyright
Copyright Nature Publishing Group Sep 2012