[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation) can affect mean catchment streamflow (Q). By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model). The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i) noise in land cover, precipitation and Q data; (ii) additional catchment climate characteristics more important than land cover; and (iii) covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer