Content area

Abstract

Understanding the complexation processes between nanoparticles and polyelectrolytes is an essential aspect in many branches of nanotechnology, nanoscience, chemistry, and biology to describe processes such as nanoparticle stabilization/destabilization and dispersion, water treatment, microencapsulation, complexation with biomolecules for example, and evolution of the interface of many natural and synthetic systems. In view of the complexity of such processes, applications are often based on empirical or semiempirical observations rather than on predictions based on theoretical or analytical models. In this study, the complex formation between an isolated weak polyelectrolyte and an oppositely charged nanoparticle is investigated using Monte Carlo simulations with screened Coulomb potentials in the grand canonical ensemble. The roles of the nanoparticle surface charge density σ, solution pH and ionic concentration C^sub i^ are systematically investigated. The phase diagrams of complex conformations are also presented. It is shown that the polyelectrolyte conformation at the surface of the nanoparticle is controlled by the attractive interactions with the nanoparticle but also by the repulsive interactions between the monomers. To bridge the gap with experiments titration curves are calculated. We clearly demonstrate that an oppositely charged nanoparticle can significantly modify the acid/base properties of a weak polyelectrolyte.[PUBLICATION ABSTRACT]

Details

Title
Complex formation between a nanoparticle and a weak polyelectrolyte chain: Monte Carlo simulations
Author
Ulrich, Serge; Laguecir, Abohachem; Stoll, Serge
Pages
595-603
Publication year
2004
Publication date
Dec 2004
Publisher
Springer Nature B.V.
ISSN
13880764
e-ISSN
1572896X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1112819883
Copyright
Springer 2005