Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Salt-and-pepper noise, which is often introduced by sharp and sudden disturbances in the image signal, greatly reduces the quality of images. Great progress has been made for the salt-and-pepper noise removal; however, the problem of image blur and distortion still exists, and the efficiency of denoising requires improvement. This paper proposes an iterative weighted-mean filter (IWMF) algorithm in detecting and removing high-density salt-and-pepper noise. Three steps are required to implement this algorithm: First, the noise value and distribution characteristics were used to identify the noise pixels, effectively improving the accuracy of noise detection. Second, a weighted-mean filter was applied to the noisy pixels. We adopted an un-fixed shape symmetrical window with better detail preservation ability. Third, this method was performed iteratively, avoiding the streak effect and artifacts in high noise density. The experimental results showed that IWMF outperformed other state-of-the-art filters at various noise densities, both in subjective visualization and objective digital measures. The extremely fast execution speed of this method is quite suitable for real-time processing.

Details

Title
An Iterative Weighted-Mean Filter for Removal of High-Density Salt-and-Pepper Noise
First page
1990
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2467528369
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.