[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
The boron isotopic composition (δ11 B) of marine carbonates (e.g. corals) is increasingly utilised as a proxy for paleo-pH, with the strong correlation between δ11 B of marine calcifiers and seawater pH now well documented. However, the potential roles of other environmental parameters that may also influence both the boron isotopic composition and boron concentration into coral aragonite are poorly known. To overcome this, the tropical scleractinian coral Acropora sp. was cultured under 3 different temperatures (22, 25 and 28 °C) and two light conditions (200 and 400 μmol photon m-2 s-1 ). The δ11 B indicates an increase in internal pH that is dependent on the light conditions. Changes in light intensities from 200 to 400 μmol photon m-2 s-1 seem to indicate an apparent decrease in pH at the site of calcification, contrary to what is expected in most models of light-enhanced calcification. Thus, variations in light conditions chosen to mimic average annual variations of the natural environments where Acropora sp. colonies can be found could bias pH reconstructions by about 0.05 units. For both light conditions, a significant impact of temperature on δ11 B can be observed between 22 and 25 °C, corresponding to an increase of about 0.02 pH-units, while no further δ11 B increase can be observed from 25 to 28 °C. This non-linear temperature effect complicates the determination of a correction factor. B / Ca ratios decrease with increasing light, consistent with the decrease in pH at the site of calcification under enhanced light intensities. When all the other parameters are constant, boron concentrations in Acropora sp. increase with increasing temperatures and increasing carbonate ion concentrations. These observations contradict previous studies where B / Ca in corals was found to vary inversely with temperature, suggesting that the controlling factors driving boron concentrations have not yet been adequately identified and might be influenced by other environmental variables and/or species-specific responses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer