It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Ti-Pt phase binary phase diagram and the corresponding phase transformations in the composition range 30-50 at.% Pt have been investigated using a variety of characterization methods (DTA, SEM and TEM). This study was inspired by ongoing work on some experimental Ti-Ni-Pt and Ti-Pt-Ni-Hf high temperature shape memory alloys that were found to contain unexpected phases not reported previously in such alloys. Furthermore, close analysis of the peritectoid invariant proposed by Biggs et al. revealed a range of confusing and somewhat contradictory results and, as a result, it was decided to attempt to determine the true nature of the diagram in this composition range and to understand the complicating effects of interstitial contamination on the observed microstructures and phase equilibria.
The microstructure of as-cast and heat treated alloys contains more than two phases after equilibration treatments suggesting interstitial contamination. In addition, the microstructures revealed that the peritectoid transformation (Ti3Pt+β-TiPt[special characters omitted]Ti4Pt3) proposed in the literature exists but, because of sluggish transformation kinetics, the actual peritectoid reaction is limited and does not account for the observed DTA peaks that Biggs et al. used to estimate the invariant temperature. Rather, it will be shown that the peaks are due to the transformation of β-TiPt to a lamellar β-TiPt+Ti4Pt3 structure at approximately 1230 °C. In addition, a modification to the phase diagram is proposed based on other experimental evidence.
Characterization of the various phases observed in the microstructures (using SADP and CBED in the TEM) confirmed the presence of the known phases Ti3Pt and α-TiPt. In addition, a new phase with stoichiometry Ti5Pt3 was observed in both as-cast and heat treated samples. This phase is shown to be stabilized by oxygen and to have a hexagonal structure with lattice parameters a ∼ 8.0 nm and c ∼ 5.0 nm (space group P63/mcm). The Ti4Pt 3 phase appears to be a true binary phase that tends to be highly faulted and be structurally related to the Ti5Pt3 phase with a pseudo-hexagonal structure with a ∼ 7.96 nm and c ∼ 23.6 nm. Detailed electron diffraction evidence indicates that the crystal structure is probably triclinic although it was difficult to determine the actual point and space group.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer